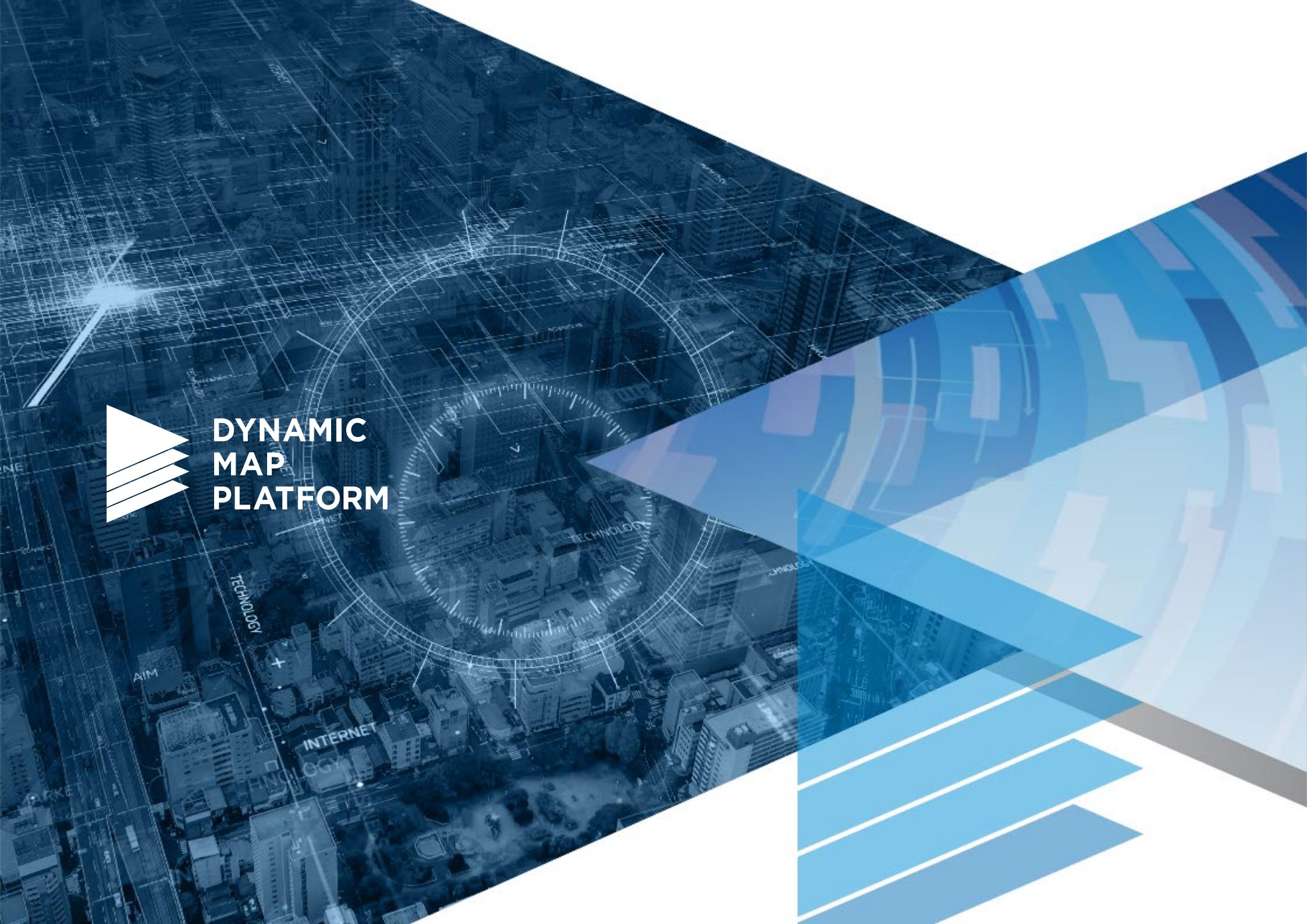


Financial Results Presentation for the Second Quarter of Fiscal Year Ending March 2026


Dynamic Map Platform Co., Ltd.

December 23, 2025

T S E
Growth
336A

DYNAMIC MAP PLATFORM

Table of Contents

- 01 Company and Business Overview**
- 02 Latest trends in autonomous driving technology**
- 03 Initiatives in New Business Domains**
- 04 Financial Results for the First Quarter and Full-Year Forecast for FY Ending March 2026**
- 05 Business Pipeline Update**
- 06 Appendix**

01

Company and Business Overview

Company Overview

Company Name Dynamic Map Platform Co., Ltd. (Securities Code: 336A TSE Growth)

Established June 13, 2016

Head Office Address 2-12-4 Shibuya, Shibuya-ku, Tokyo

Business Locations Japan, USA, Germany, Saudi Arabia, UAE, South Korea

Employees 248 (as of November 2025)⁽¹⁾

- Generation and sale of high-precision 3D map data (HD maps) for use in autonomous driving, advanced driver assistance systems, etc.
- Provision of high-precision location information and solutions for various applications (except autonomous driving) using technologies related to HD maps

Business Scope

Establishment History

Dynamic Map Platform (DMP) was established under the initiative of the Japanese government, with funding from major Japanese automotive companies. Later, DMP wholly acquired a U.S. -based HD map company, formerly an investment of General Motors Company, to expand its business globally.

Government of Japan

Automobile Companies

TOYOTA

SUBARU

DAIHATSU

ISUZU

Established

**DYNAMIC
MAP
PLATFORM**

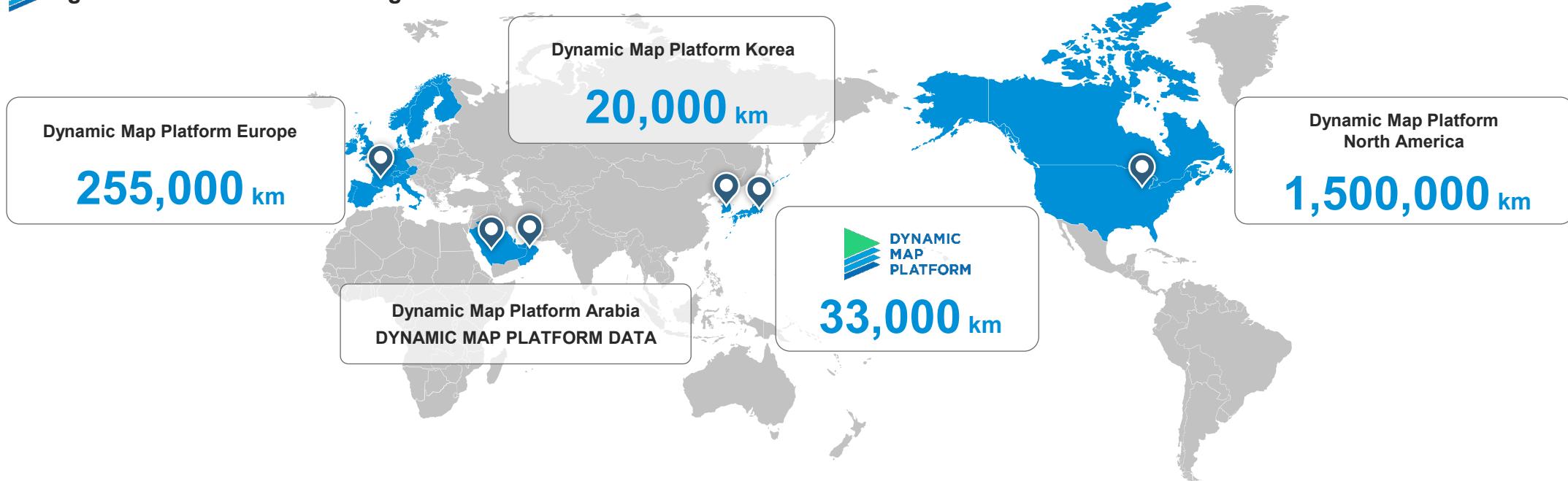
(1) The employee count includes temporary workers.

Dynamic Map Platform At-a-Glance

Expanding globally with strong sales growth; further acceleration expected as markets continue to grow.

JPY 7.4 bn
Consolidated Sales
FYE3/2025

26
countries⁽³⁾
North America, Europe, Japan, South Korea, Middle East


64%
% of Overseas Sales
FYE3/2025

52%
Consolidated Sales CAGR
FYE2020–3/2025

37%
AD/ADAS Market CAGR⁽¹⁾
2022A–2030E

JPY 1.6 tn
Digital map Market Size⁽²⁾
2023A

High-Precision 3D Data Coverage ⁽⁴⁾

Notes :

(1) Created by our company based on "IHS Markit "Autonomous Vehicle Sales Forecast 2023" (2) Created by our company based on "Markets and Markets "Digital Map Market Global Forecast to 2029". Exchange rate is calculated at JPY150/USD. (3)(4) as of Nov. 2025.

Highlights

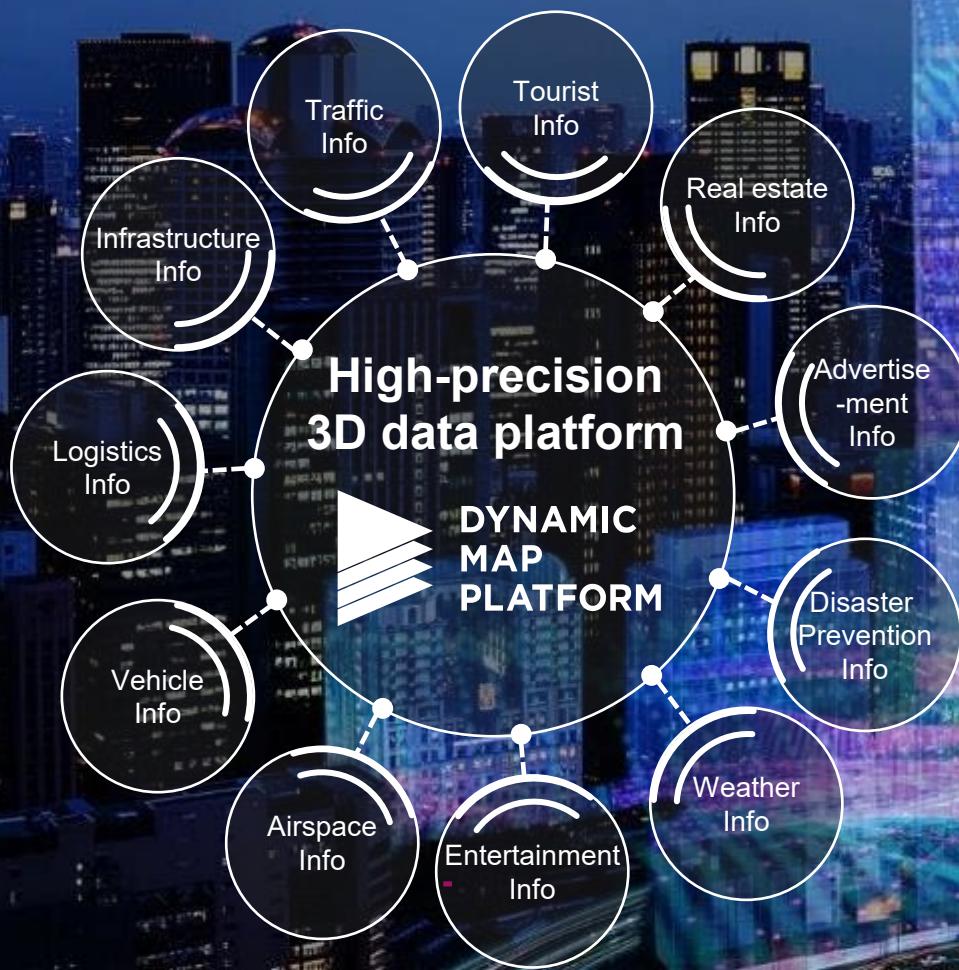
Global Deep-tech

A deep-tech startup building a high-precision location information platform called a dynamic map on a global scale

High Growth

With a strong customer base including 10 major Japanese automotive makers, GM, and the Japanese government, we are capable of achieving high revenue growth

High Competitiveness

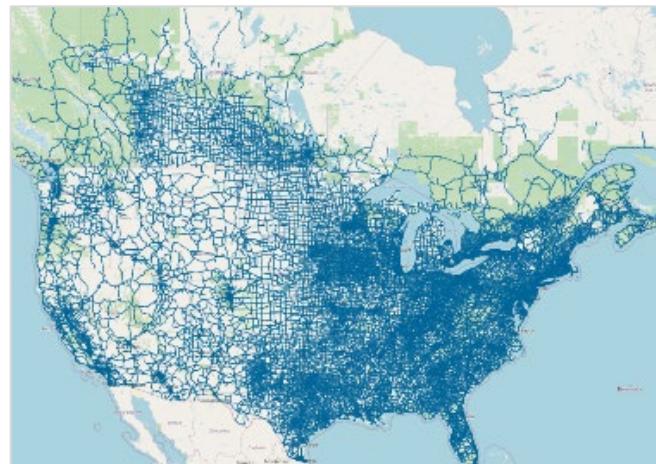

We possess overwhelmingly high-precision 3D data compared to competitors and have a competitive advantage with high technical capabilities that have contributed to achieve the world's first Lv2+ and Lv3

High Profitability

The business model is based on two pillars: a flow-type project business and a stock-type license business. Through the project business, a data infrastructure is established, and subsequently, the aim is to achieve a high-profit structure through license business, which is expected to have a high profit margin

Modeling The Earth

We aggregate various information as a high-precision 3D data platform.
We aim to realize a world where analysis, control, and prediction are possible,
thereby achieving innovations that contribute to solving societal challenges.

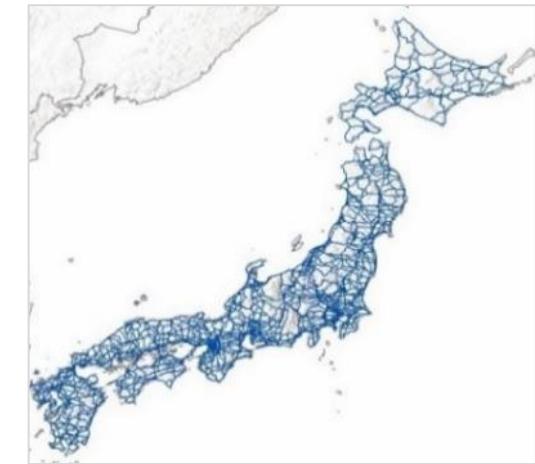


Building a Global High-Precision 3D Database (Mapped 1.8 million km to Date)

Through upfront investments, we have established 3D Database globally that meets the demands of major automotive manufacturers and possesses overwhelming coverage. DMP's data covering 1,800,000 km has a great potential to contribute to industrial DX and solving social issues around the world, beyond its use for autonomous driving and advanced driver assistance systems (AD/ADAS).

 Our 3D Data Coverage in North America

1,500,000 km


 Our 3D Data Coverage in Europe

255,000 km

 Our 3D Data Coverage in Japan

Expressways 33,000 km

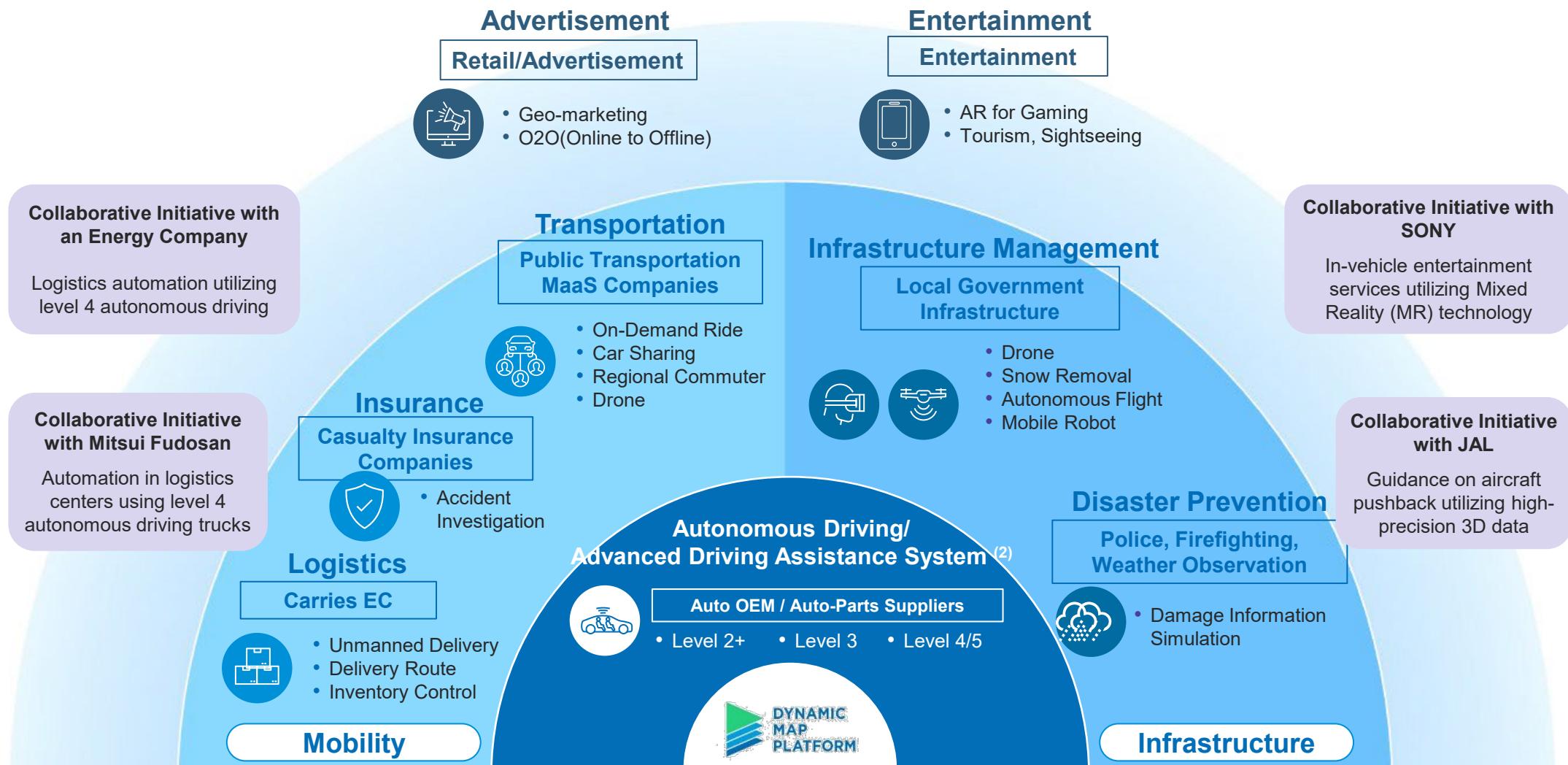
 Our 3D Data Coverage in Other Regions

— South Korea —

Highways

20,000 km

— Middle East —


Highways

Development scheduled to complete by end of FY25

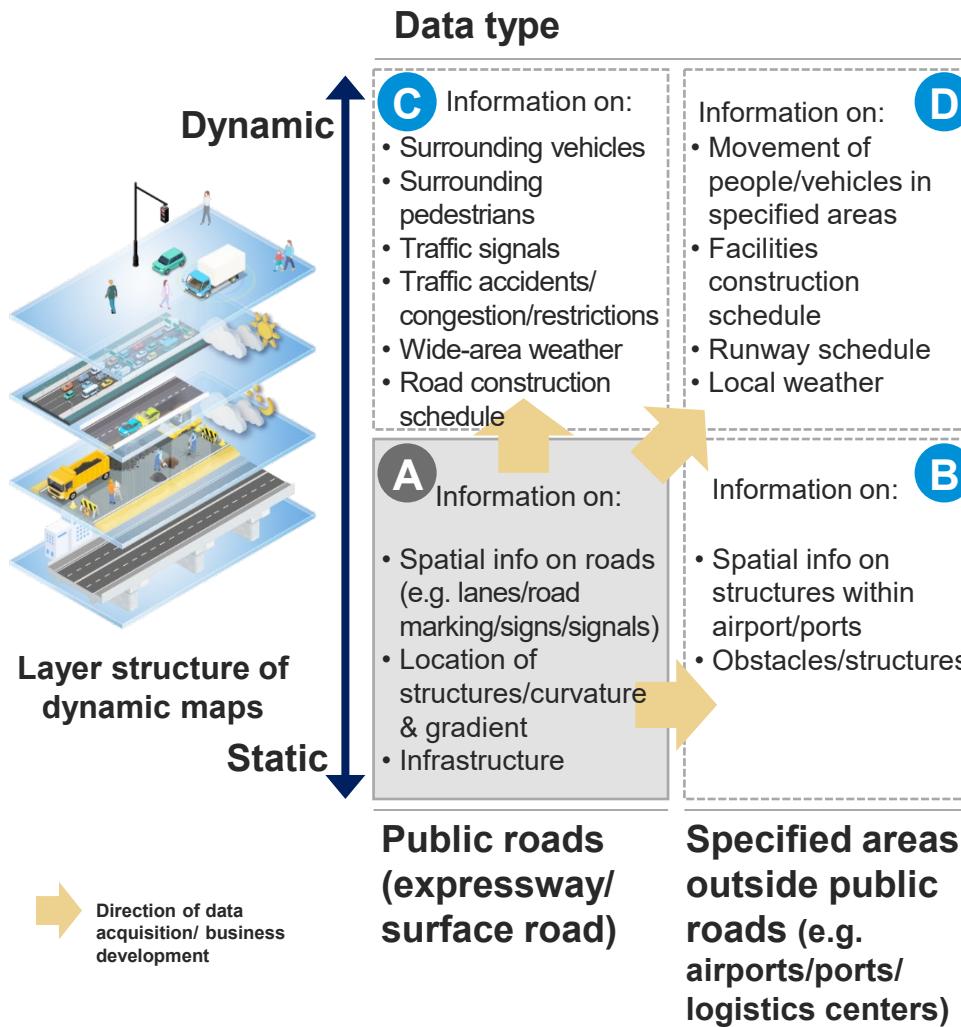
HD mapping in developed countries has been largely completed.

Cross-industry Social Impact⁽¹⁾

High-precision 3D data is a key technology that can be a game changer in various industries. We aim to lead DX and social advancement beyond our current AD/ADAS and 3D business.

Notes :

(1) Above is an image of the target market, including areas that DMP has not yet entered as of March 2025.


(2) Level 0: No driving automation, Level 1: Driving assistance (hands-on/shared control), Level 2: Automated driving functions under specific conditions (hands-off), Level 2+: Conditional automated driving on highways, Level 3: Conditional automated driving (eyes-off), Level 4: Fully automated driving under specific conditions (Mind Off), Level 5: Fully automated driving (Driver Off)

Building Dynamic Map Platform by Integrating Various Types of Data

Our high-precision 3D data provides a highly accurate location information platform for dynamic maps.

Starting with the acquisition of static data on public roads, we build a system that integrates various types of dynamic data. We also expand into specified areas outside public roads and develop and introduce applications that integrate dynamic data in order to establish dynamic maps. We acquire and integrate broader data to promote social implementation.

Data that makes up dynamic maps

> Use cases that can be realized through acquisition/integration of various type of data

Category	Usage examples
Public road HD map model (basic) 	<ul style="list-style-type: none"> Installation on mass-produced vehicles with AD/ADAS for public roads
Wide-area HD map model 	<ul style="list-style-type: none"> Study on construction of digital twins Use of high-precision 3D data for accident investigation Sophistication of infrastructure management tools
Public road dynamic map model 	<ul style="list-style-type: none"> Guidance for low-carbon operation of transport vehicles (eco-driving system) Guidance for snow removal on public roads
Specified area dynamic map model 	<ul style="list-style-type: none"> Development of applications for autonomous mobility at airport/port facilities Introduction of vehicle management systems for logistics centers
All-domain scalable model 	<ul style="list-style-type: none"> Design of Autonomous Driving Assistance Lanes aiming at establishment of digital lifeline Development of level 4 autonomous driving trucks for logistics automation Simulators for vehicle development, urban development, etc.

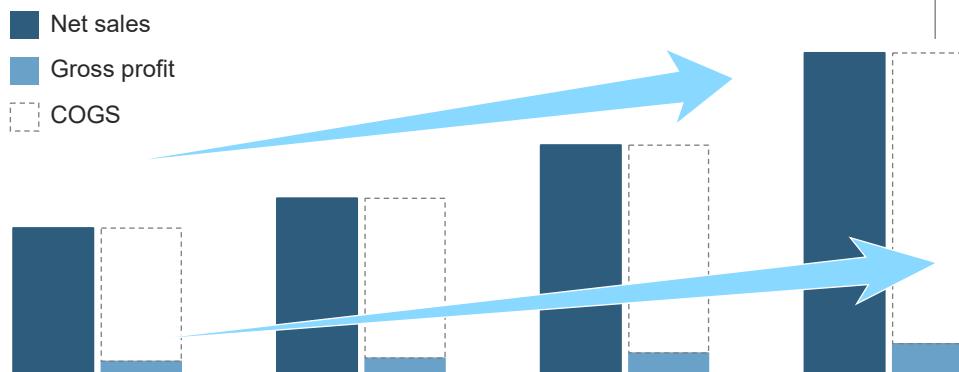
Overall Picture of Our Business Model (2 Pillars of Project and License)

Project business: Accepts orders selectively, targeting a certain gross margin.

License business: This business leverages preprocessed data to achieve high profitability.

Project

- Accepts orders selectively, targeting **a certain gross margin**
- Plays a role as **R&D, building a business foundation while cutting down on self-funded investments**
- **COGS mainly comprises variable costs associated with project orders**


A Automotive Business

Expands HD maps coverage and updates data for GM and other customers

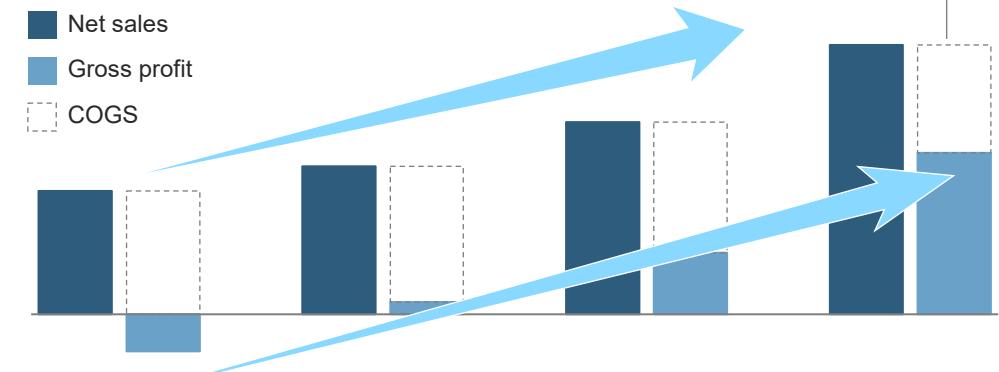
B 3D data Business

Has track record of a large number of government-led R&D projects

Gross profit growth (illustrative)⁽¹⁾

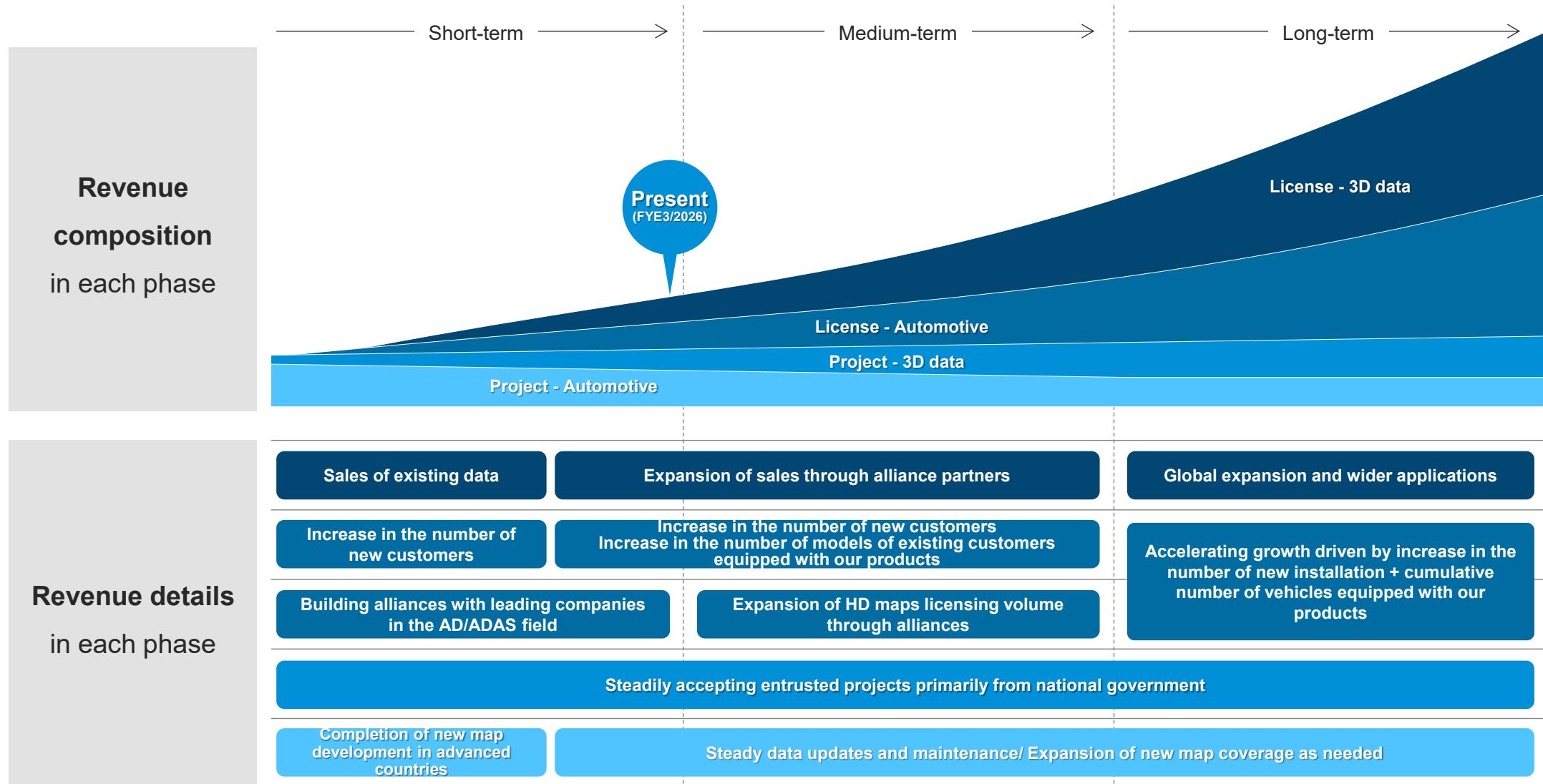
License

- Utilizes **preprocessed assets (data and systems)**
- **Generates revenues from mass production license sales determined by unit price multiplied by quantity, and enterprise data license sales**
- **Fixed-cost COGS leads to a high marginal profit ratio**


C Automotive Business

Provides HD maps for mass-produced vehicles (mass production license)
Enterprise data license

D 3D data Business


Establishes highly versatile data platform
Enterprise data license

Gross profit growth (illustrative)⁽¹⁾

Future Revenue Outlook

In addition to the steady growth of project-based revenue and license-based revenue from the automotive business, we expect potential growth in license-based revenue from the 3D data business.

Notes: (1) The above trend of revenues is shown for illustrative purpose, and does not guarantee the achievement of figures.

02

Latest trends in autonomous driving technology

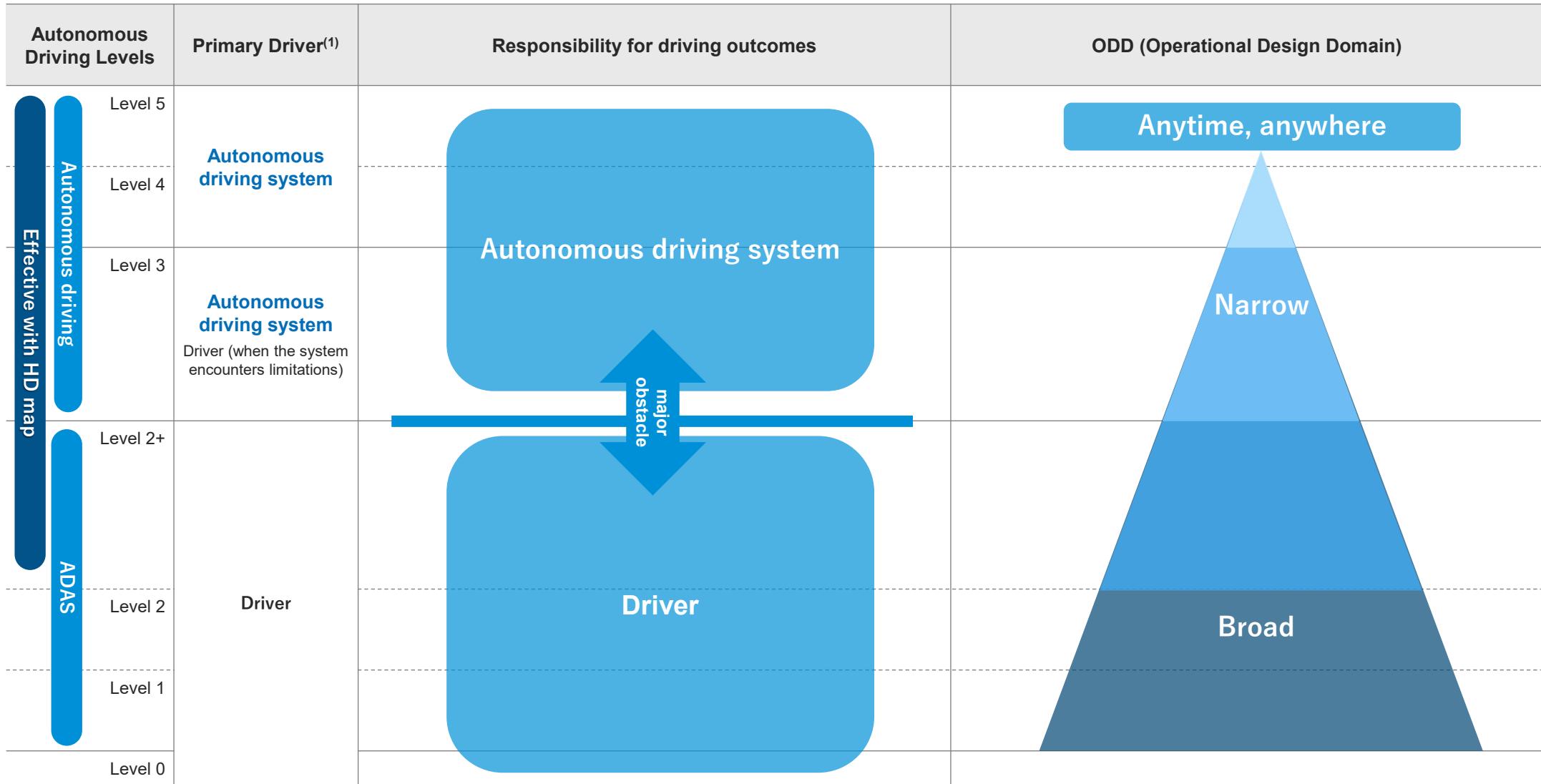
Autonomous Driving Levels

Globally recognized levels of autonomous driving are defined by the Society of Automotive Engineers (SAE), categorized into six levels from Level 0 to Level 5.

Autonomous Driving Levels	Primary Driver ⁽¹⁾	Overview/Definition	Details/Conditions
Effective with HD Maps	Autonomous driving system	Full Autonomous Driving The system performs all dynamic driving tasks and responds to situations where continued operation becomes difficult—without any limitations, i.e., outside of any Operational Design Domain (ODD).	The vehicle can operate autonomously anytime and anywhere, regardless of conditions such as location, weather, or speed, without any driver intervention. It accurately recognizes its surroundings—including traffic signals, signs, pedestrians, and other vehicles—and responds appropriately.
		Full Autonomous Driving Under Specific Conditions⁽²⁾ The system performs all dynamic driving tasks and executes fallback responses when continued operation becomes difficult—within an ODD.	Autonomous driving is possible without driver intervention within ODDs such as highways or specific urban areas. Outside of these domains, autonomous driving is not available.
		Conditional⁽³⁾ Autonomous Driving The system performs all dynamic driving tasks within an ODD. When the system determines that continued operation is no longer possible, the driver must appropriately respond to a takeover request from the system.	Autonomous driving is possible within ODDs, such as highways or certain urban areas, on the condition that the driver appropriately responds to takeover requests when the system is unable to continue operating. When such a request is made, the driver must be present and ready to take control.
		Enhanced Autonomous Driving Functions Under Specific Conditions An advanced form of Level 2 autonomous driving that includes additional features such as lane changes, merging, diverging, and overtaking slower vehicles.	The system automatically executes complex maneuvers such as lane changes, merging, diverging, and overtaking slower vehicles. Hands-free driving is possible under certain conditions, but the driver must continuously monitor the environment and be prepared to take control when necessary.
		Autonomous Driving Functions Under Specific Conditions (Combination of Level 1 Features) The system performs both longitudinal and lateral vehicle control sub-tasks within an ODD.	Driver assistance is made possible through a combination of Level 1 functions. Specifically, the system can maintain lane positioning while keeping a safe distance from the vehicle ahead.
		Driver Assistance The system performs either a longitudinal or lateral vehicle control sub-task within an ODD.	The system is capable of controlling vehicle motion in either the forward/backward (longitudinal) or left/right (lateral) direction. Typical functions include autonomous braking, following the lead vehicle, and maintaining the driving lane.
		The driver performs all dynamic driving tasks.	

Source: Prepared by the company based on materials from the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Japan

Notes: (1) Primary Driver: Refers to the entity responsible for perception, prediction, judgment, and operation necessary to control the vehicle. (2) Specific Conditions: Conditions required for the autonomous driving system to operate, including factors such as location, weather, and speed. When a specific geographic area or road environment is defined as a condition, it is referred to as an "Operational Design Domain (ODD)." For example, if the system operates only on highways or within designated urban areas, those areas constitute the ODD. (3) Conditional: Indicates that the system performs all driving tasks under specific conditions, but when it is no longer able to continue operation, the driver must appropriately respond and take control. (4) Example: The driver may be able to operate a smartphone while the vehicle is in motion.


The levels of autonomous driving:

Responsibility for driving outcomes (ODD: Operational Design Domain)

For Level 3 and above, the system bears responsibility for driving outcomes while it is operating, which has become a major obstacle in the development efforts of automobile manufacturers.

As the level increases, the ODD becomes narrower, and at Level 5, there are no limitations — the system can operate anytime, anywhere.

Autonomous Driving Levels	Primary Driver ⁽¹⁾	Responsibility for driving outcomes	ODD (Operational Design Domain)
Level 5			Anytime, anywhere
Level 4	Autonomous driving system		
Level 3	Autonomous driving system Driver (when the system encounters limitations)	Autonomous driving system	
Level 2+		Driver	Narrow
Level 2	Driver	Driver	Broad
Level 1			
Level 0			

Notes: Source: Created by our company based on materials from the Ministry of Land, Infrastructure, Transport and Tourism (MLIT), etc. (1) Primary Driver: Refers to the entity responsible for perception, prediction, judgment, and operation necessary to control the vehicle.

Overview of Trends in Advanced Driver Assistance Systems (ADAS: Level 2 to Level 2+)

In North America, GM's Super Cruise and Tesla's FSD (Full Self-Driving) are driving the expansion of the Operational Design Domain (ODD). In China, the widespread adoption of ADAS features known as NOA (Navigate on Autopilot) is becoming the central focus of competition.

In Japan, there is a growing trend to follow the expansion of ODD seen in the U.S. and China. In Europe, the mandatory implementation of advanced driver monitoring systems may accelerate the deployment of hands-off driving features in conjunction with these systems.

Autonomous Driving Levels	Driver (Human) Involvement		Responsibility for driving outcomes during system operation	ODD		Feature Examples
ADAS	Level 2+	Constant Monitoring and Readiness to Intervene Required	Hands-free	Driver	Limited	Reasonably Broad
	Level 2	Constant Monitoring and Hands-on Steering Required	Hands-on			Broad
		LKA, ACC				

Areas	Overview of ADAS Market Trends
North America	<ul style="list-style-type: none"> GM's Super Cruise significantly expanded ODD. Tesla has launched FSD Version 14, introducing destination-to-destination driving support.
China	<ul style="list-style-type: none"> Chinese automakers are actively selling vehicles equipped with NOA (Navigate on Autopilot), and consumers are increasingly prioritizing NOA functionality when making purchasing decisions, making it one of the key areas of market competition. Amid rising tensions between the U.S. and China, Chinese automakers are actively building an independent ecosystem and supply chain. Japanese and European automakers are partnering with Chinese companies to develop and sell vehicles equipped with NOA functionality in the Chinese market.
Japan	<ul style="list-style-type: none"> Some automakers have introduced hands-off driving features on highways, but the number of equipped models and units remains limited. In response to the expansion of ADAS functionality and ODD in North America and China, some automakers are shifting their next-generation ADAS development strategy from deepening functionality (L2+ to L3) to focusing on expanding the ODD.
Europe	<ul style="list-style-type: none"> Some automakers have introduced hands-off driving features, primarily for highway use. Although these systems do not fully comply with EU safety regulations, they have been exceptionally approved when paired with advanced driver monitoring systems that continuously track driver attention⁽¹⁾. However, the availability of these features remains limited to certain countries. Starting July 2026, all newly sold vehicles in the EU will be required to include advanced driver monitoring systems⁽²⁾, and this mandate is expected to accelerate the deployment of hands-off driving features when combined with such systems.

Notes: (1)Referred European Transport Council "Risks of hands-off driving and system-initiated lane changes in Level 2 driver assistance systems" <https://etsc.eu/risks-of-hands-off-driving-and-system-initiated-lane-changes-in-level-2-driver-assistance-systems/>. (as of Oct 16, 2025)

(2)Referred European Union "NEW RULES ON VEHICLE SAFETY AND AUTOMATED MOBILITY"

https://single-market-economy.ec.europa.eu/document/download/cd243af9-c877-401e-9f69-d7d4ab6a90c6_en?filename=Fact%20Sheet%20General%20Safety%20regulations_July%202024.pdf&prefLang=mt (as of Oct 16, 2025)

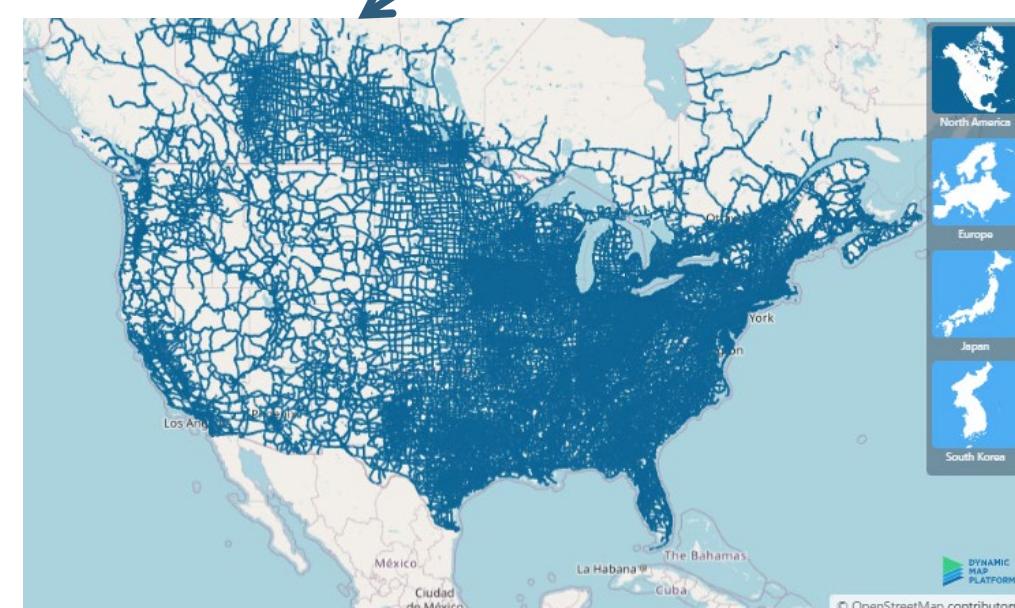
Overview of the Autonomous Driving (Level 4) Market

Robotaxis, led by Waymo, fall under Level 4 autonomous driving. In applications such as robotaxis, where the system—not a human—is fully responsible for driving, a higher level of safety is required.

In both the United States and China, the social implementation of autonomous driving is steadily progressing. However, in actual operations, safety drivers are sometimes required to be onboard due to regulations imposed by manufacturers or local governments.

Autonomous Driving Levels	Driver (Human) Involvement		Responsibility for driving outcomes during system operation	ODD	
Level 4	Not needed	Brain-off	System	Limited	Narrow

Areas		Overview of Autonomous driving Market
The United States	 ZOOX 	<ul style="list-style-type: none"> Waymo (a subsidiary of Google) is expanding its service area while rolling out autonomous driving services. Currently, it operates in five cities: Phoenix, San Francisco, Los Angeles, Austin, and Atlanta. The company has also announced plans to launch services in Miami and Washington, D.C. Zoox (a subsidiary of Amazon) began offering free autonomous ride services in Las Vegas starting in September 2025. The company plans to transition to paid services once regulatory approval is granted. Additionally, Zoox is planning future test operations in other areas, including San Francisco, Miami, Austin, and Washington, D.C. Tesla launched its robotaxi service in Austin in June 2025. As of October 2025, the service is limited to invited users only. Pony.ai previously conducted test drives in the United States, but its permit for driverless testing was revoked in 2021. Although testing with safety drivers continues, the distance covered in U.S. test operations has shown slower growth in recent years. May Mobility operates shuttle services on limited routes, such as within university campuses.
China	 	<ul style="list-style-type: none"> Baidu, China's leading search engine company, operates a robotaxi service called "Apollo Go". Since its launch in 2022, the service has expanded to 11 cities across China as of November 2024, including Beijing, Shanghai, Guangzhou, Shenzhen, Chongqing, Wuhan, Chengdu, Changsha, Hefei, Yangquan (Shanxi Province), and Wuzhen Town in Tongxiang (Zhejiang Province). As of the end of July 2024, the cumulative number of rides since the service began in 2022 has exceeded 7 million⁽¹⁾. In China, Pony.ai operates paid robotaxi services in four cities: Beijing, Shanghai, Guangzhou, and Shenzhen. Except for Shanghai, the services are driverless. As of the end of June 2024, Pony.ai has deployed over 250 robotaxis across China, with a cumulative autonomous driving distance exceeding 33.5 million kilometers, including more than 3.9 million kilometers of driverless operation⁽²⁾. WeRide has obtained operating permits in several cities across China, including Guangzhou, Shenzhen, Beijing, Wuxi, and Dalian. Most of these permits are for operations with onboard safety personnel, and fully driverless services appear to be limited to pilot programs in select areas⁽³⁾.

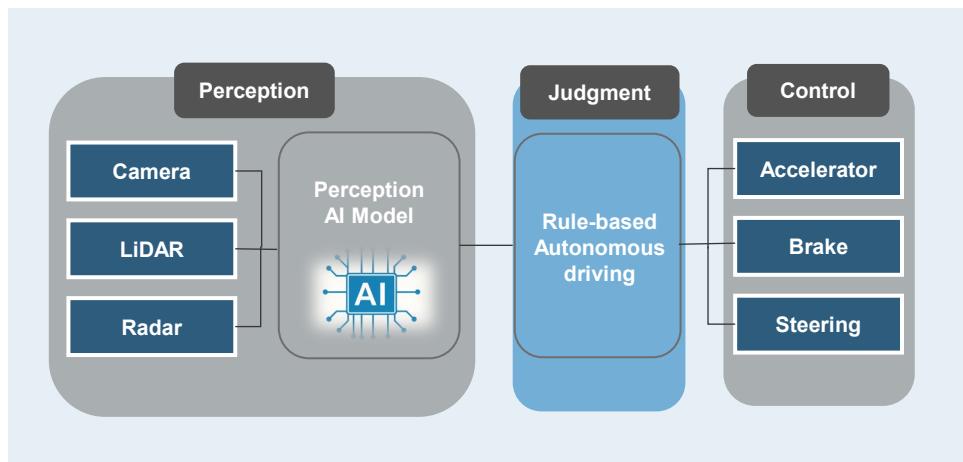

Notes: Source: Created by our company based on information from each company's official website (as of October 15, 2025).

(1) Information cited from the JETRO article dated December 19, 2024, titled "The Evolution and Outlook of Autonomous Driving Technology Development in Wuhan – Baidu's 'Apollo Go' Case Study." <https://www.jetro.go.jp/biz/areareports/special/2024/1201/ca07147c1878517a.html> (as of October 15, 2025). (2) Source: Pony AI Inc., IPO Prospectus, November 26, 2024, Registration No. 333-282700, <https://ir.pony.ai/static-files/511f2bca-b981-4287-87b8-4fabca618bbf> (as of October 15, 2025). (3) Source: WeRide Inc., Annual Report (Form 20-F), March 25, 2025, <https://ir.weride.ai/static-files/72a895d1-7999-4f63-9d97-476c54e7ecab> (as of October 15, 2025).

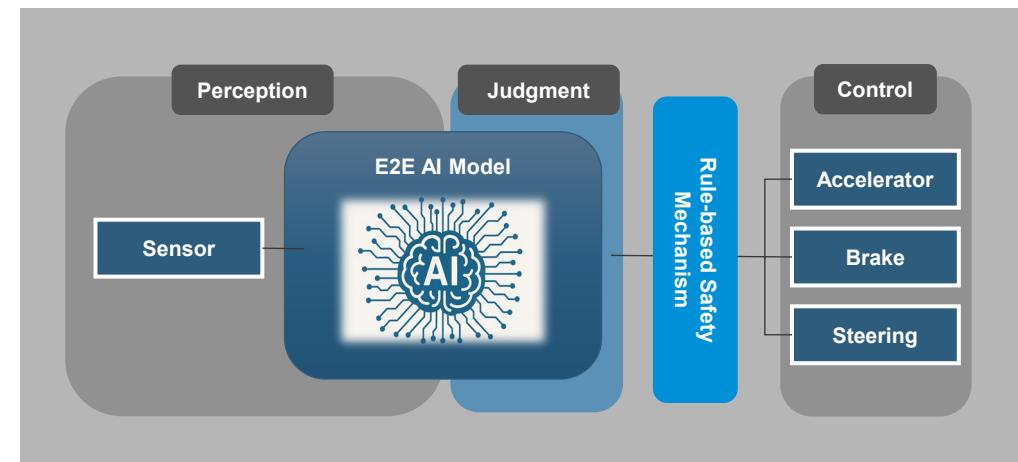
Key Driver of ODD Expansion (1): Expansion of High-Precision Map Coverage

One of the key factors driving the expansion of the Operational Design Domain (ODD) is the increasing coverage of high-precision 3D maps. GM's ADAS feature, Super Cruise, has expanded its ODD in line with the enhancement of our high-precision map data.

	2017	2019	2022	2024
GM Super Cruise ODD	Approx. 208,000km	Approx. 320,000km	Approx. 640,000km	Approx. 1,200,000km
	Only Highway	State to State	City to City	Town to Town



Factors Driving ODD Expansion (2): E2E AI Systems Enabled by Advances in AI Technology


The expansion of ODD is also fueled by the rapid development of AI-driven vehicle control systems.

End-to-End AI (E2E AI) technology, in particular, has the potential to overcome the weaknesses of perceptual vehicle control systems. Companies such as Tesla and Chinese automakers are actively developing these solutions; however, numerous challenges remain, and concerns have been raised about rushing them to market.

Conventional system

E2E AI System

Control based on Conventional System

Strengths

- Safety validation is easier when broken down into individual tasks.
- ODD expansion can be achieved in line with the growing coverage of high-precision maps.

Weaknesses

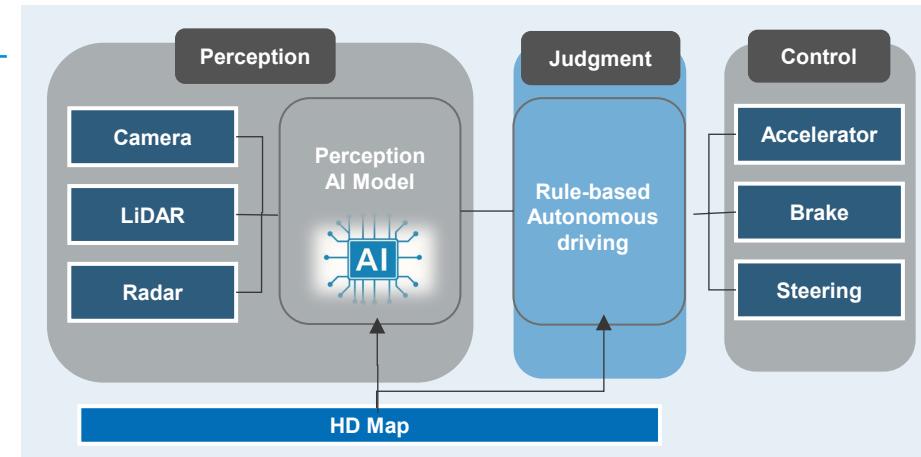
- Rule-setting for all driving scenes is impractical.
- Maintenance and updates of high-precision maps are required.

Control based on End-to-End AI System

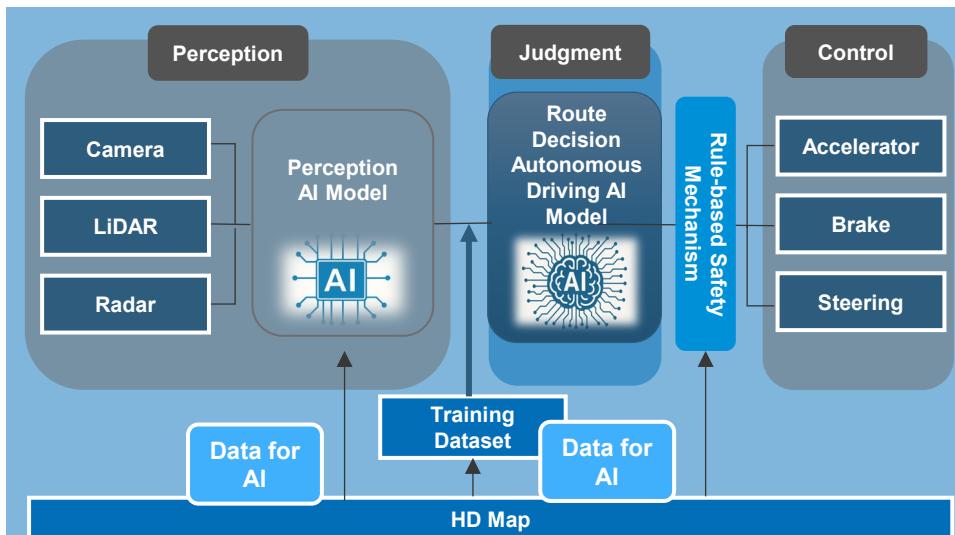
Strengths

- ODD expansion can be achieved without relying on the coverage of high-precision maps.

Weaknesses

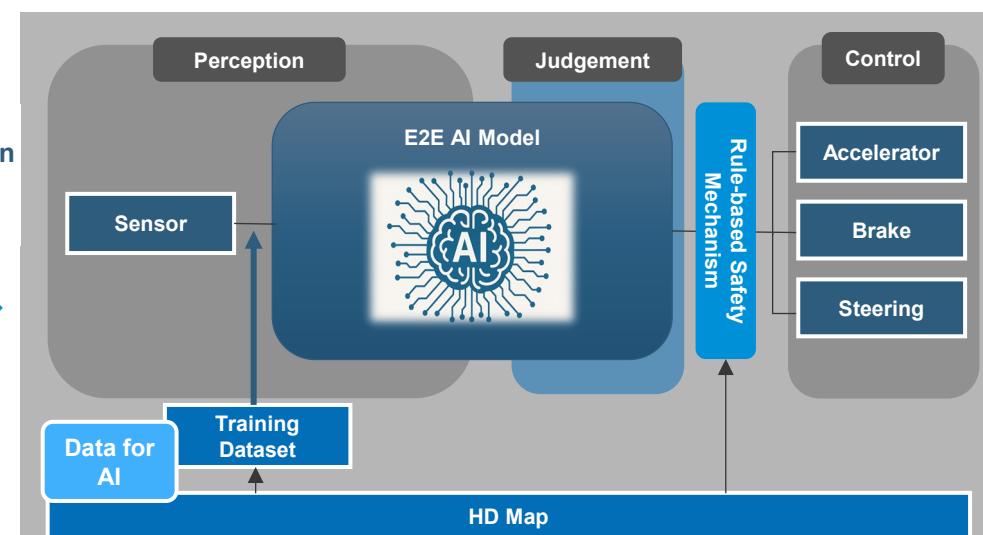

- Safety validation is challenging due to its black-box nature.
- Establishing AI models requires extensive training with large volumes of high-quality data.
- Learning and inference resources are required for AI processing.

Modular E2E AI System


Multiple variations exist and are evolving step by step in E2E AI-based autonomous driving technology.

Due to the heavy processing load, the difficulty of safety validation, and the challenge of securing massive resources required by monolithic E2E AI systems, some autonomous driving players have adopted a Modular E2E AI system strategy based on functional decomposition.

Conventional system



Modular E2E AI System

AI models and vehicle installation rules vary by region.

Monolithic E2E AI System

Autonomous Driving Systems and Value of High-Precision Map Data

As a platform provider that delivers high-precision location information from large volumes of high-quality source data, the Company can offer the value of high-precision map data to any autonomous driving system/technology. Responding to a wide range of business opportunities by aligning with customer needs and technology trends.

In addition to mass production license for vehicle installation, we are capturing data demand through enterprise license sales for AI use (Data for AI).

Values of High-Precision Map Data	Autonomous Driving System/Technology		
	Conventional System	Modular E2E AI System	Monolithic E2E AI System
● Critical data for driving control, including self-localization.	○	○	
● ODD Settings for Autonomous Driving Systems	○	○	
● Training Data for AI Models		○	○
● Ground Truth in System Verification		○	○
● Elements of Rule-Based Safety Mechanisms (such as ODD Settings)		○	○

Companies involved in the development of autonomous driving technologies

With the advancement of AI utilization, semiconductor manufacturers are playing an increasingly prominent role in autonomous driving system development.

Our company provides high-precision 3D map data (Data for AI) to major overseas semiconductor manufacturers.

Semiconductor manufacturers engaged in the development of components for autonomous driving systems

Company (Country)	Key Products, Technologies, and Features	Key Clients, Partners, and Case Studies
NVIDIA (The U.S.)	<ul style="list-style-type: none"> DRIVE AGX Orin/Thor (SoC) In addition to the SoC, a full-stack solution is available, covering the operating system and autonomous driving application layers. 	<ul style="list-style-type: none"> Major automotive manufacturers (Europe, The U.S.) Dedicated EV manufacturers (China) Autonomous taxi service providers (The U.S., China)
Qualcomm (The U.S.)	<ul style="list-style-type: none"> Snapdragon Ride (SoC) Providing development support tools for autonomous driving stacks compatible with SoCs 	<ul style="list-style-type: none"> Major automotive manufacturers (Europe, The U.S., Japan, China) Dedicated EV manufacturers (Europe, China) Tier 1 supplier (Europe, Japan)
AMD (The U.S.)	<ul style="list-style-type: none"> Versal AI Edge (SoC) Providing development support tools for autonomous driving stacks compatible with SoCs 	<ul style="list-style-type: none"> Major automotive manufacturers (Japan) Tier 1 supplier (Europe, Japan)
Renesas Electronics (Japan)	<ul style="list-style-type: none"> R-Car (SoC) Providing development support tools for autonomous driving stacks compatible with SoCs 	<ul style="list-style-type: none"> Major automotive manufacturers (Japan) Tier 1 supplier (Japan)

Notes 1: SoC (System on Chip): A semiconductor chip that integrates the main functions of an in-vehicle computer—such as the CPU, GPU, and AI processing—into a single unit. In autonomous driving, it serves as the "brain" that processes data from cameras and LiDAR in real time.
 Source: Created by our company based on publicly available information from various semiconductor manufacturers and their client companies.

03

Initiatives in New Business Domains

Joined the “NVIDIA Omniverse Partner Council Japan”

Joined the “NVIDIA Omniverse Partner Council Japan” and initiated collaboration on building digital twin environments on NVIDIA Omniverse.

Collaboration on Digital Twin Environment Development

NVIDIA
Omniverse™

- We provide High-Precision 3D Data with centimeter-level accuracy, which is essential for autonomous driving and advanced driver assistance systems (ADAS). Our map data currently covers more than 1.8 million kilometers of roads across Japan, North America, Europe, South Korea, and the Middle East. Leveraging this data, realistic 3D road models can be created on NVIDIA Omniverse—precisely reproducing lane counts, widths, curvature, and gradients—and used as digital twin assets.
- Through this participation, we will strengthen partnerships within the Council. Our goal is to promote the development of **more sophisticated digital twin environments using NVIDIA Omniverse and support customers in solving their challenges through these solutions.**

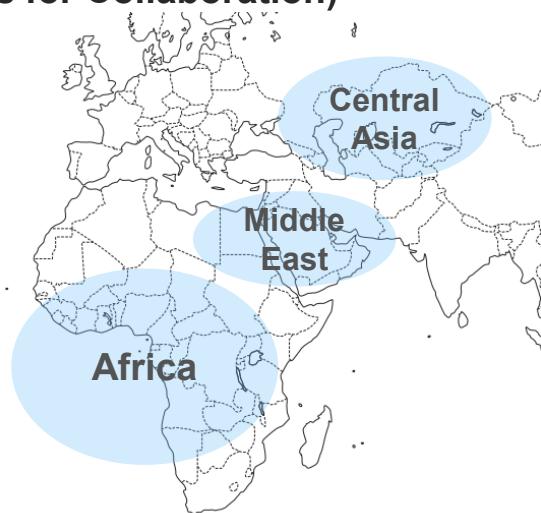
Image of the constructed 3D road model

Strategic Partnerships in the Middle East

To accelerate business expansion in the Middle East, we established a strategic partnership with local partner Space 42. To drive the adoption of safe autonomous driving in the region, we are promoting collaboration on international standardization, platform integration, and technology partnerships.

Aiming to promote safe autonomous driving in markets such as the Middle East, Central Asia, and Africa.

Local Partner in Middle East



In September 2025, signed an MOU to collaborate in the following three areas.

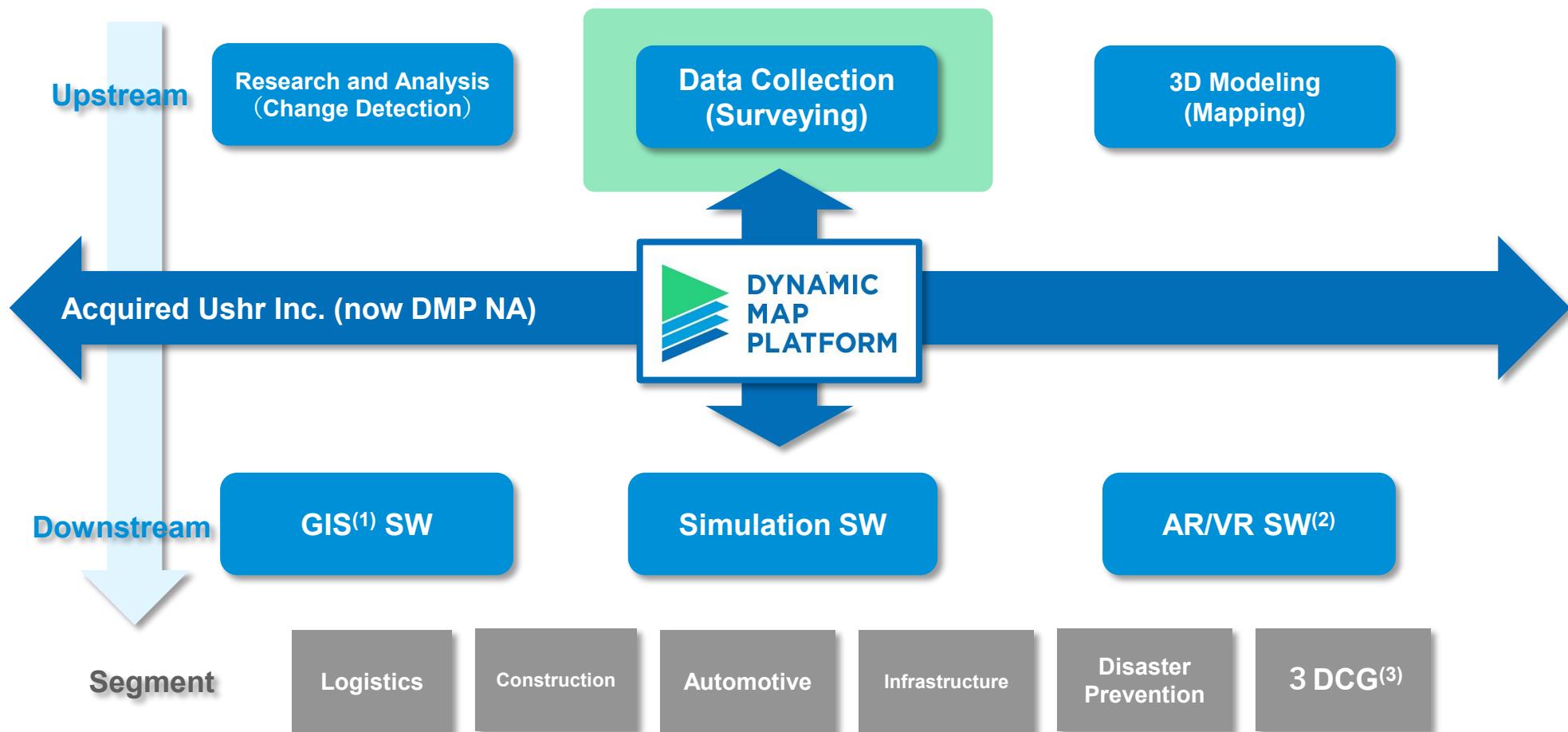
International Standardization of High-Precision Maps and Data Platforms
Autonomous Driving Pilot Projects
Technology and Innovation Collaboration

Space42 (ADX: SPACE42) is a UAE-based **AI-powered Space Tech** company that integrates satellite communications, geospatial analytics and artificial intelligence capabilities to enlighten the Earth from space. Formed in 2024 by the successful merger of Bayanat and Yahsat, Space42's global reach allows it to address the rapidly evolving needs of its customers in governments, enterprises, and communities. Space42 comprises two business units: Space Services and Smart Solutions. Space Services focuses on upstream satellite operations for both fixed and mobility satellite services. Smart Solutions integrates geospatial data acquisition and processing with AI to inform decision-making, enhance situational awareness, and improve operational efficiency. Major shareholders include G42, Mubadala, and IHC.

(Target Markets for Collaboration)

Government-affiliated
tech company

Government-affiliated
Investment Company


Government-affiliated
Investment Company

Business Expansion Initiatives via M&A

To capture market share through horizontal integration, we acquired Ushr Inc. (currently Dynamic Map Platform North America) in 2019, achieving the leading position in the global HD map market. As a vertical integration M&A strategy, both upstream and downstream sectors are targeted.

Working to build a network within the surveying industry to handle upstream data collection.

Notes: (1) Geographic Information System Software (A system for handling geospatial data) (2) Augmented Reality (Technology for overlaying digital information onto the real world) / Virtual Reality (Technology that creates a fully virtual environment and immerses the user) Software
 (3) Three-dimensional computer graphics (technology for creating three-dimensional images and models using computers)

Building a Surveying Network

Building a network of surveying firms to advance regional digital infrastructure. The first initiative involves turning a surveying firm in Toyama Prefecture into a subsidiary. Our goal is to realize the vision, “Modeling the Earth,” by expanding surveying technologies and establishing a flexible surveying framework, while contributing to regional digital infrastructure development and the maintenance of surveying capabilities. Leveraging extensive data development to accelerate the growth of our group’s business.

Expanding Surveying Capacity: Our Key Challenge

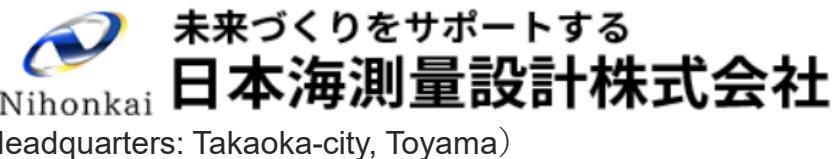
In providing solutions for limited or specified areas, surveying is required to obtain the foundational data.

Expanding Surveying Technologies	<ul style="list-style-type: none"> Securing alternative surveying methods and adopting cutting-edge technologies
Establishing a Flexible Surveying Framework	<ul style="list-style-type: none"> Fast and flexible surveying without disrupting operations

Issues Facing the Local Surveying Sector

Difficulty in Securing Contractors for Local Infrastructure Development

Slow Adoption of New Technologies, Delaying Digital Infrastructure.


Industry Restructuring	<ul style="list-style-type: none"> Stable local orders hinder industry consolidation among small businesses
Talent Development	<ul style="list-style-type: none"> Talent outflow to related sectors and major firms due to better compensation (especially young and mid-level professionals)
Technology Adoption	<ul style="list-style-type: none"> Financial constraints limit investment in advanced equipment, slowing adoption of 3D and drone surveying technologies

Building a Network of Surveying Firms

Advancing essential data development for our business while contributing to solving regional infrastructure challenges.

Extensive Data Development for further Business Growth

- Acquiring Nihonkai Survey & Design Co., Ltd., which specializes in surveying, investigation, and civil engineering design, as a subsidiary.

- Envisioning Network Integration Through Roll-Up Strategy

Launching Dynamic Map Platform Consultants Co., Ltd. to manage and strengthen our surveying operations.

Building a Surveying Network – The Need to Expand Surveying Capabilities

Solutions in targeted areas such as airports, ports, and logistics hubs require precise base data. To expand our business, we must strengthen surveying technologies and establish an agile framework—adding in-house capabilities alongside existing partners.

Technological Trends in 3D Measurement

- With improvements in sensor performance and miniaturization of equipment, data accuracy and processing speed have significantly increased.
- This enables precise data acquisition across large spaces, expanding applications such as ICT-based construction and digital twin development.

Surveying System

MMS

- Equipping vehicles with LiDAR and cameras to perform continuous surveying while in motion.
- Accurately capturing point clouds of road surroundings along the driving route.

Aerial Surveying

- Acquire wide-area data from high altitude by mounting cameras and LiDAR on an aircraft.

Drone

- Equipped with a laser or camera, enabling rapid acquisition of large-area data.
- Capable of capturing terrain beneath tree cover, making it increasingly useful in forests and disaster-affected areas.

Terrestrial Laser Scanner / Handheld Laser Scanner

- Laser measurements conducted on the ground.
- Supports building interiors and underground spaces.

LiDAR Images from Smartphones

- Easily perform 3D surveying using cameras and LiDAR built into smartphones

Data Processing

- Integration with AI:** Enables automatic classification and recognition of images and point cloud data, as well as real-time analysis.
- Real-time Processing:** Utilizes 5G/6G communication for instant transmission and sharing from the field to the cloud.
- Non-GPS Environment Support:** Provides self-positioning and map generation in areas without GPS coverage.

Need for Expanded Surveying Capabilities:
Details provided from page 48.

04

Financial Results for the Second Quarter and Full-Year Forecast for FY Ending March 2026

FYE 3/2026 2Q Summary

Businesses and developments advanced as planned for the fiscal year ending March 2026. Promoted overseas expansion through strategic partnerships with local partners in the Middle East and the rollout of dynamic maps in emerging markets. Launched joint research with Keio University aimed at social implementation.

Started a project to network surveying firms, with the goal of expanding surveying capabilities and contributing to solving social issues by leveraging our technology and data.

Sales and license-business sales increased year-on-year. Adjusted EBITDA also improved compared to the same period last year.

Major Initiatives

Businesses

- Mass production of new vehicle models equipped with our high-precision 3D map data has begun.
- Progress in enterprise license deals for automotive AI applications (Data for AI). (November 2025, concluded of an enterprise license agreement with a major global semiconductor manufacturer)
- Providing our data globally in the traffic simulation domain through PTV Group's newly released platform, Model2Go for PTV Vissim.
- Strategic partnership in the Middle East with Space42, an AI-powered SpaceTech company based in the United Arab Emirates.

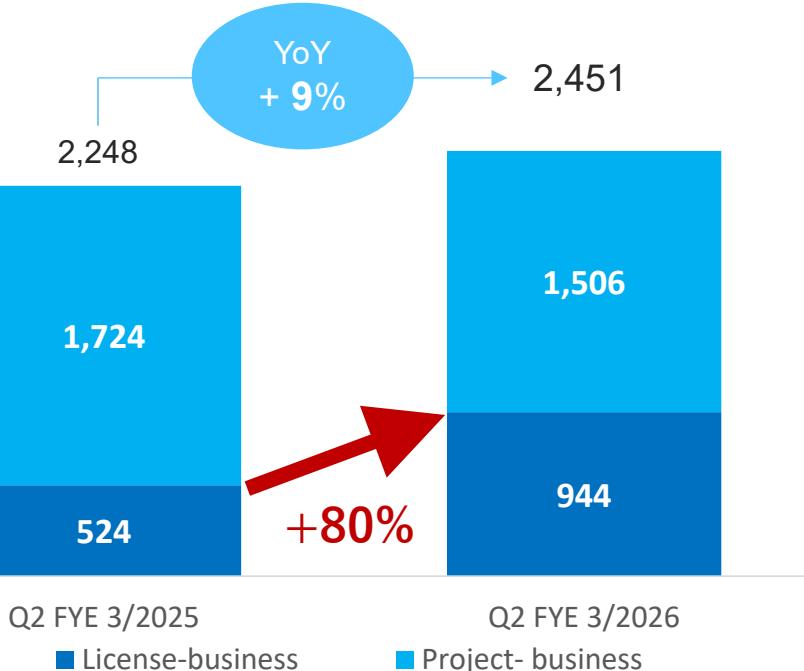
Developments

- Joined the “NVIDIA Omniverse Partner Council Japan” and initiated collaboration on building digital twin environments on NVIDIA Omniverse.
- A joint research project has been launched with Professor Seiko Shirasaka’s laboratory at the Graduate School of System Design and Management, Keio University, aimed at the social implementation of dynamic maps. The collaboration promotes both the societal implementation of dynamic maps and their application in emerging industries.
- Progress in the “AI for Data” Initiative for Efficient Generation of High-Precision 3D Data in Collaboration with Microsoft Japan
- Implemented under a national government R&D initiative. Selected for the MLIT’s support program to advance smart city development across ASEAN cities.

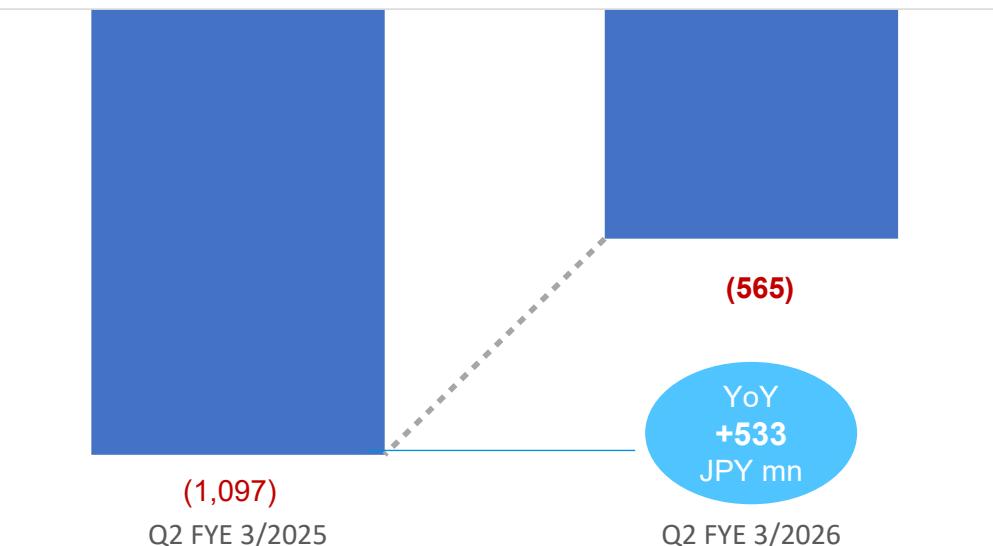
M&A

- Launched a project to network surveying firms with the aim of expanding the surveying capabilities required for our business and contributing to solving social issues related to regional infrastructure

2Q Earnings Highlights (Cumulative)


- **Sales (up 9%) and license-business sales (up 80%) increased year-on-year.**
- **Adjusted EBITDA, a key profitability metric, was negative 565 million yen, an improvement of 533 million yen compared to the same period last year.**

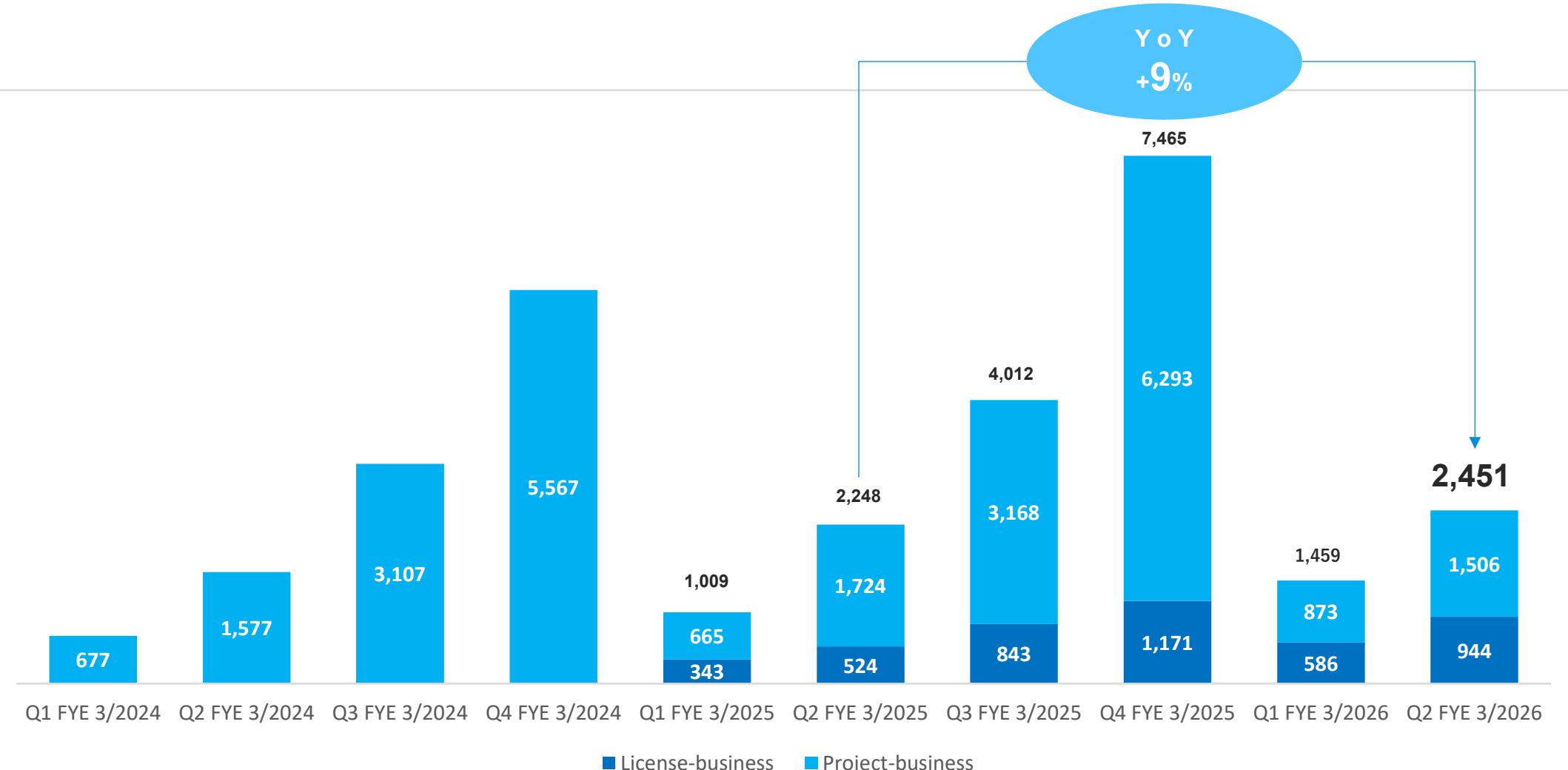
FYE 3/2026 2Q Consolidated Earnings Highlights


All our three priority KPIs— net sales, license-business sales, and adjusted EBITDA— increased YoY.

Net sales increased driven by growth in license-business sales, including an enterprise license deal for AI related use cases (Data for AI) with a major automotive manufacturer group. Project-business sales decreased year-over-year as new development work in North America reached a resolution. Meanwhile, our key profitability metric, adjusted EBITDA, showed a significant year-over-year improvement.

Net Sales (JPY mn)

Adjusted EBITDA (JPY mn)

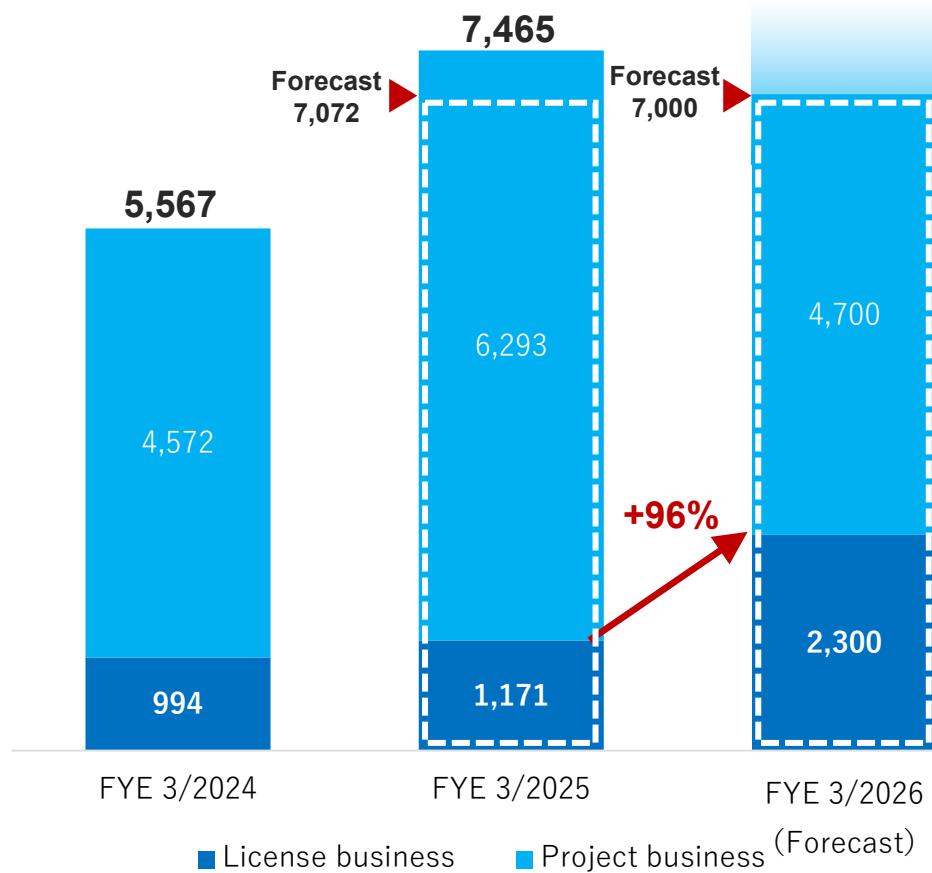


Note: Adjusted EBITDA = EBITDA (Operating profit + Depreciation and amortization) + Government subsidy income (recorded as non-operating income) + M&A related expenses

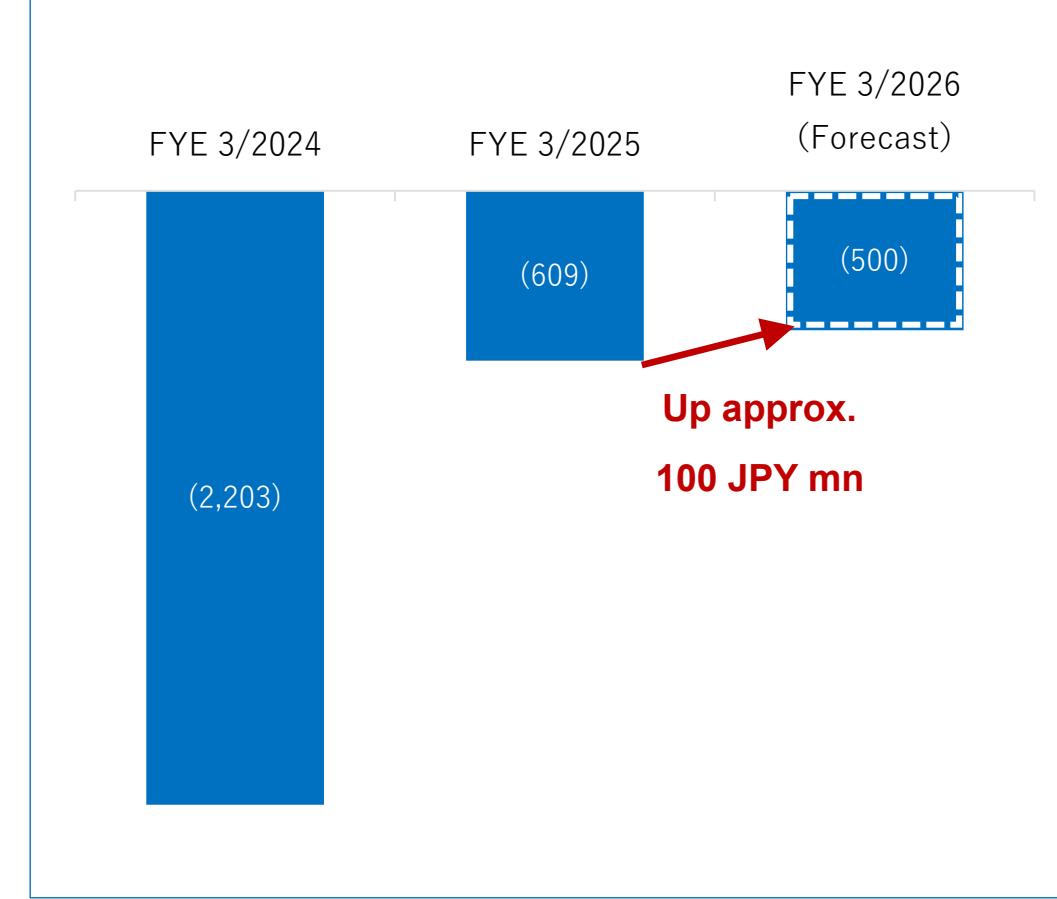
(Reference) Consolidated Results: Quarterly Cumulative Net Sales Trends

Despite seasonal (quarterly) fluctuations, net sales have maintained a consistent growth trend.

Cumulative Net Sales (JPY mn)


■ License-business ■ Project-business

FYE 3/2026 Full-Year Earnings Forecast (Unchanged)


Expectations for industrial and social DX driven by 3D data remain high, and our medium- to long-term outlook and strategic approach remain unchanged. Efforts focus on strengthening alliances for license business growth and technology/service development, alongside pursuing M&A as part of the growth strategy.

There have been no significant changes in investment and development trends among client companies, particularly in the automotive industry, and based on the progress of pipeline projects, the full-year earning forecast remains unchanged.

Net sales (JPY mn)

Adjusted EBITDA (JPY mn)

FYE 3/2026 Key Initiatives to Boost Sales

Work to realize sales growth potential in each sales category.

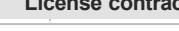
License business: Selling data for simulator and other applications through alliance partners, and capturing potential HD map sales for enterprise data license.

Project business: Winning and expanding contracts for public and private-sector projects; expanding HD map coverage regions and developing HD maps for new road categories.

Sales category	Priority initiatives in FYE3/2026	Potential for sales growth	Recent Progress
License business	<ul style="list-style-type: none"> Selling DMP's HD map data through alliance partners 	<ul style="list-style-type: none"> Sales of DMP's data through alliance partners (e.g. PTV, Terrasolid) Sales expansion of snow removal support system Sales expansion of 3Dmapspocket 	Providing data for the traffic simulation domain.
	<ul style="list-style-type: none"> Mass production license: increasing the number of makers/models of HD map-equipped vehicles Enterprise data license: selling data license for leading players in the area of autonomous driving/advanced driver assistance 	<ul style="list-style-type: none"> Sales fluctuations linked to sales trends of HD map-equipped vehicles Sales of data for AI training and inference <ul style="list-style-type: none"> For major global map makers For major semiconductor makers For major in-vehicle system makers 	Start of mass production for new vehicle models. Enterprise license for semiconductor manufacturers.
Project business	<ul style="list-style-type: none"> Efforts to win/expand the contract scale for public and private-sector projects that lead to the development of products for license business 	<ul style="list-style-type: none"> Expansion of the contract scale for government projects Securing and expanding contract orders for projects of our collaboration & alliance partners in the private sector 	Selected for the ASEAN Smart City Support Project.
	<ul style="list-style-type: none"> Expanding HD map data coverage regions through collaboration with automotive makers, and winning orders for the development of HD maps for new road categories 	<ul style="list-style-type: none"> Winning orders for HD map development for new countries, regions and road categories 	

05




Business Pipeline Update

License Business (3D data)

Based on our extensive database of mapped data covering 1.5 million km globally and accumulated technical expertise, we have focused on sales activities. With future volume expansion, the business is expected to be a growth driver for both revenue and profit. By partnering with PTV Group of Germany, Terrasolid of Finland and more, we aim to expand our 3D data sales.

 Key Pipelines⁽¹⁾

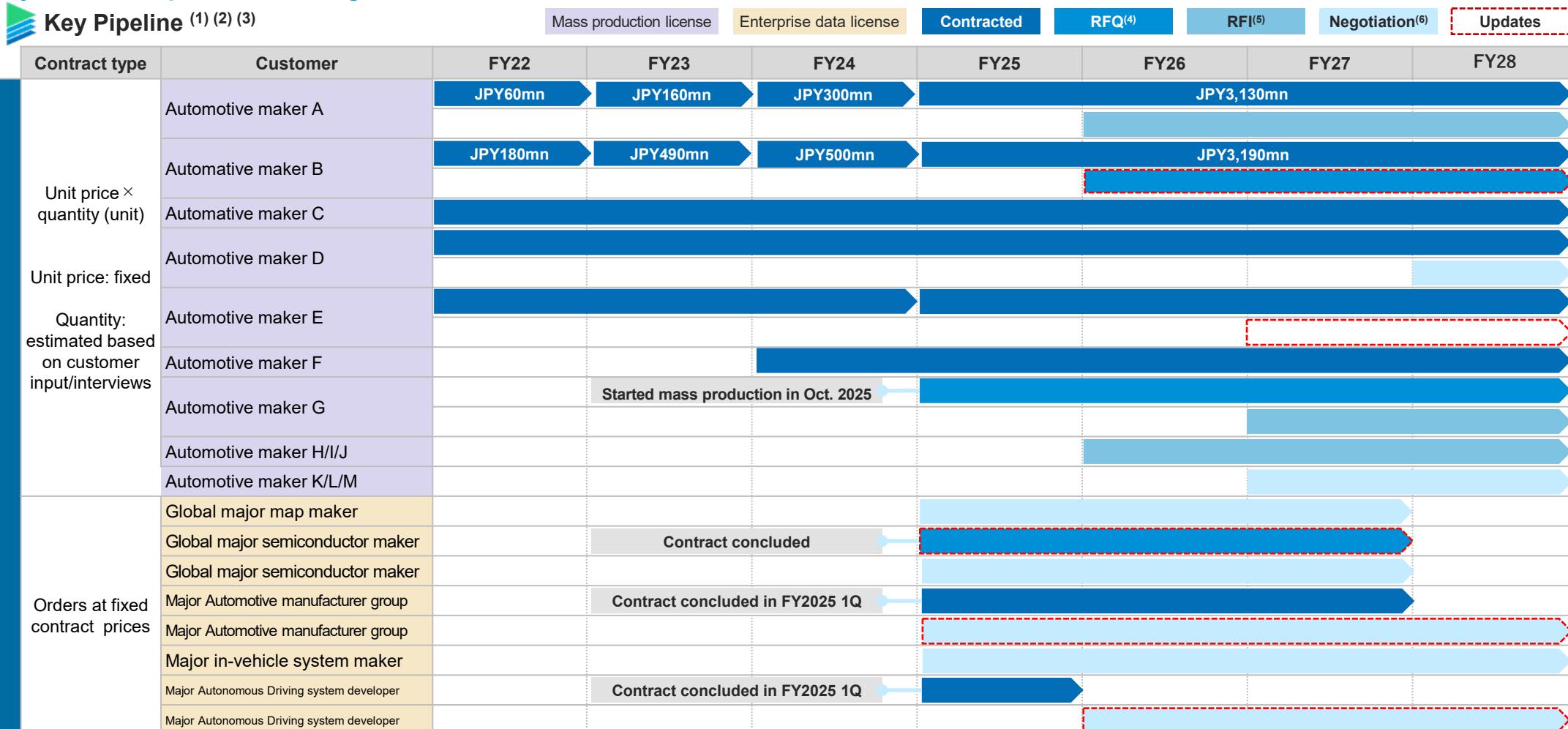
Customer	Business area	Guidance app	Viewer app	Enterprise data license	Contracted	Negotiation ⁽²⁾	Updates
Local governments	Snow removal						
Major non-life insurance company	Accident investigation						
Accident investigation company							
Major road management company	Infrastructure management						
Foreign local government	V2X						
Foreign local government	Infrastructure management						
Foreign software companies	Simulator, industrial use						

 Initiatives to Expand Data Sales Through Business Partners

Collaborations with overseas software companies

- August 2025: Our **high-precision 3D data has been globally available in the field of traffic simulation** through the newly launched platform Model2Go for PTV Vissim by the German simulation software company PTV Group.
- April 2025: We signed MOU with Terrasolid Ltd., a Finland-based provider of point cloud and image processing software, with the aim of **democratizing access to precise 3D data and driving innovation across various industries**. Through this collaboration, we **aim to foster broader adoption of high-precision 3D data and maximize the opportunity to utilize our existing high-precision 3D data**.

PTV Vissim でのシミュレーションイメージ


Notes:

(1) For contracted items with amounts undisclosed, we withhold disclosure in accordance with agreements with the customers.

(2) "Negotiation" refers to various stages of ongoing negotiations leading up to "Contracted." Some pipelines include cases where concrete terms and conditions are being clarified. However, none of these have reached legally binding agreements, nor do they guarantee the conclusion of contracts or generation of revenue in the future.

License Business (Automotive)

In addition to the increase in equipped vehicle models and the ongoing trend of AI utilization in autonomous driving and ADAS, we expect the demand for our data. We have captured corporate license demand from major automotive manufacturer groups, autonomous driving system developers, and leading overseas semiconductor manufacturers.

Notes: (1) The amounts shown in the pipelines are estimated revenues based on contract unit prices and sales quantity estimates based on interviews with customer. If actual sales quantities fall below estimates, the figures may not develop as shown in the chart. (2) The exchange rates used for calculations are JPY131.43/USD for FY2022, JPY140.56/USD for FY2023, JPY151.58/USD for FY2024 and JPY140/USD for FY2025 and beyond. (3) For contracted items with amounts undisclosed, we withhold disclosure in accordance with agreements with the customers. (4) RFQ: refers to the status of responding to a Request For Quotation received from a customer. The RFQ or response thereto has no legal binding force, and there is no guarantee that a contract will be concluded in the future based on the RFQ or the response. In the automotive industry, in general, development contracts and production plans are often considered looking several years ahead to the start of service provision. At the time of receiving an RFQ, the pipeline is assumed to become more concrete. However, the transaction details or sales conditions provided in the response to the RFQ may be changed or the order may be canceled afterward, failing to generate the revenue expected by the Group. (5) RFI: refers to the status of responding to a Request For Information (RFI) received from a customer. The RFI or response thereto has no legal binding force, and there is no guarantee that a contract will be concluded in the future based on the RFI or the response. Specifically, RFI is a stage leading up to the receipt of RFQ, and the transaction details and sales conditions specified in the responses to RFI may be changed or the order may be cancelled in the stages proceeding to RFQ and Contracted, failing to generate the revenue expected by the Group. (6) Negotiation: See notes on P36.

Project Business (3D data)

Backed by a strong relationship with the Japanese government, we have secured multiple national projects in the 3D data business domain. Contracts have been progressively signed throughout fiscal year 2025, and we are also actively engaged in joint projects with partner private companies.

Key Pipeline (revenue recognized from FY2022 onwards) ^{(1) (2)}

Contract type	Customer	Project	FY22	FY23	FY24	FY25	FY26	FY27	FY28
Contract with fixed amount Total amount: fixed	NEDO*	Green innovation fund	JPY120mn	JPY680mn	JPY320mn				
	Digital Agency	Research and study on the construction of digital twins	JPY670mn						
	Digital Agency	Pilot research on developing an industrial data collaboration platform in the mobility sector		JPY270mn		Contracted through a consortium			
	NEDO	Digital Lifeline			JPY1,460mn				
	METI*	"Bridge" dynamic maps for public areas		JPY100mn	JPY210mn	JPY210mn			
	METI	Fiscal year 2023 "standardization acceleration support project (international standardization of high-precision 3D map data)"		JPY130mn					
	MIC*	Study on V2N-Based Use Case Demonstration Linked to Level 4 Autonomous Truck Testing on the Shin-Tomei Expressway					JPY210mn		
	MLIT*	Overseas smart city support initiatives through Japan-ASEAN cooperation			Contract signed				
	Private company	POC testing for logistics automation			Contract signed for pilot testing				
	Private company	POC testing for logistics automation					JPY210mn		

Based on the government's long-term plan, continuous orders are expected

※Contracts beyond FY26 are not completed, since government projects are basically single-year contracts.

NEDO: New Energy and Industrial Technology Development Organization

METI: Ministry of Economy, Trade and Industry

MIC: Ministry of Internal Affairs and Communications

MLIT: Ministry of Land, Infrastructure, Transport and Tourism

Notes: (1) These pipelines represent estimated revenues that can be received based on the contract and may not develop as indicated. (2) The exchange rates used for calculations are JPY131.43/USD for FY2022, JPY140.56/USD for FY2023, JPY151.58/USD for FY2024 and JPY140/USD for FY2025 and beyond. (3) Negotiations: See notes on P36.

Project Business (Automotive)

We have expanded HD map coverage, the foundation of our business, while ensuring stable revenues and reducing internal costs.

Key Pipeline (revenues recognized from FY2022 onwards) ^{(1) (2) (3)}

Contracted

RFQ⁽⁴⁾RFI⁽⁵⁾Negotiation⁽⁶⁾

Updates

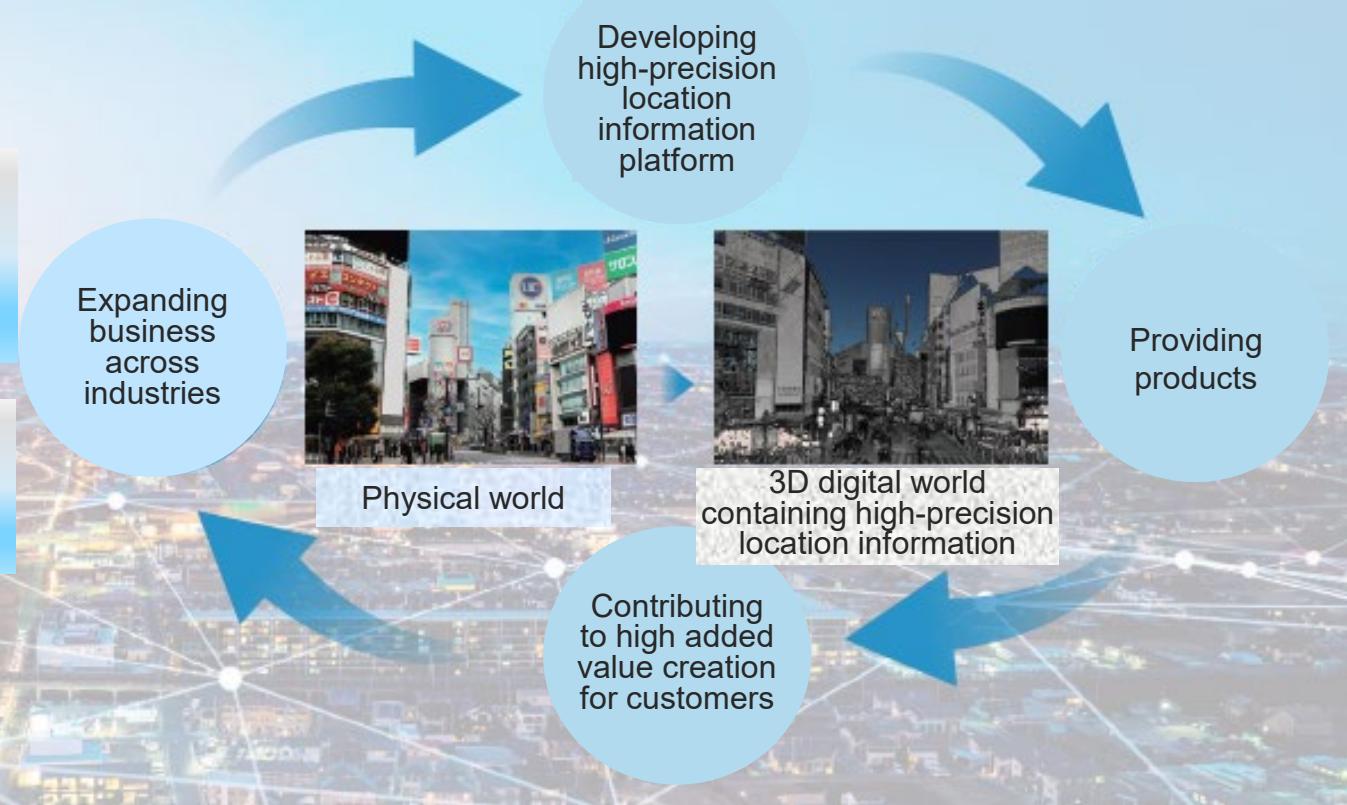
Contract type	Customer	Project	FY22	FY23	FY24	FY25	FY26	FY27	FY28
Orders at fixed contract prices Total amount for multiple years: fixed Allocation for each fiscal year: based on results and estimates by DMP	Automotive Company	New development	JPY190mn						
		New development	JPY260mn	JPY720mn					
		New development		JPY670mn	JPY1,800mn	JPY680mn			
		New development		JPY60mn	JPY3mn	JPY360mn			
		New development	JPY800mn	JPY220mn	JPY90mn				
		New development	JPY110mn	JPY340mn					
		New development					JPY1,450mn		
		New development							
		New development							
		Update maintenance	JPY690mn	JPY1,020mn	JPY1,320mn				
		Update maintenance							

Representative Projects

Development of HD maps for client automotive companies

- We establish HD maps for major roads in the U.S., Europe, and other regions, and generate revenue based on coverage distance.
- Plan to have continued business in new regions on top of additional development in the existing regions.
- Expect stable revenue through map updates and maintenance.

Notes


(1) These pipelines represent estimated revenues that can be received based on the contract and may not develop as indicated. (2) For contracted items with amounts undisclosed, we withhold disclosure in accordance with agreements with the customers. (3) The exchange rates used for calculations are JPY131.43/USD for FY2022, JPY140.56/USD for FY2023, JPY151.58/USD for FY2024 and JPY140/USD for FY2025 and beyond. (4) Request For Quotation: See notes on P37. (5) Request For Information: See notes on P37. (6) Negotiation: See notes on P36.

Medium- to Long-term Vision

We aim to build a shared infrastructure that supports all industries by providing high-precision location information

As a standard infrastructure for the digital society, we aim to create a vast virtual space with absolute accuracy that provides a common platform of high-precision location information to be referenced by all industries.

We provide products that are commonly needed in each industry, help customers create added value, and link them across industries to expand our business.

06

Appendix

Consolidated Statements of Income

Consolidated Statements of Income

	FYE3/2025 Q2	FYE3/2026 Q2	Change	(JPY mn)
Net sales	2,248	2,451	+203	
Cost of sales (COGS)	2,341	2,242	(99)	
Gross profit (loss)	(93)	209	+302	
SG&A expenses	1,215	1,351	+136	
Operating profit (loss)	(1,308)	(1,142)	+166	
Non-operating income	27	133	+106	
Non-operating expenses	128	65	(63)	
Adjusted EBITDA	(1,097)	(565)	+533	
Ordinary profit (loss)	(1,409)	(1,073)	+336	
Extraordinary income	-	-	-	
Extraordinary losses	-	-	-	
Profit (loss) before income taxes	(1,409)	(1,073)	+336	
Total income taxes	6	91	+84	
Profit (loss)	(1,416)	(1,165)	+251	
Profit (loss) attributable to non-controlling interests	(0)	(1)	(0)	
Profit (loss) attributable to owners of parent	(1,416)	(1,163)	+252	

Breakdown of net sales

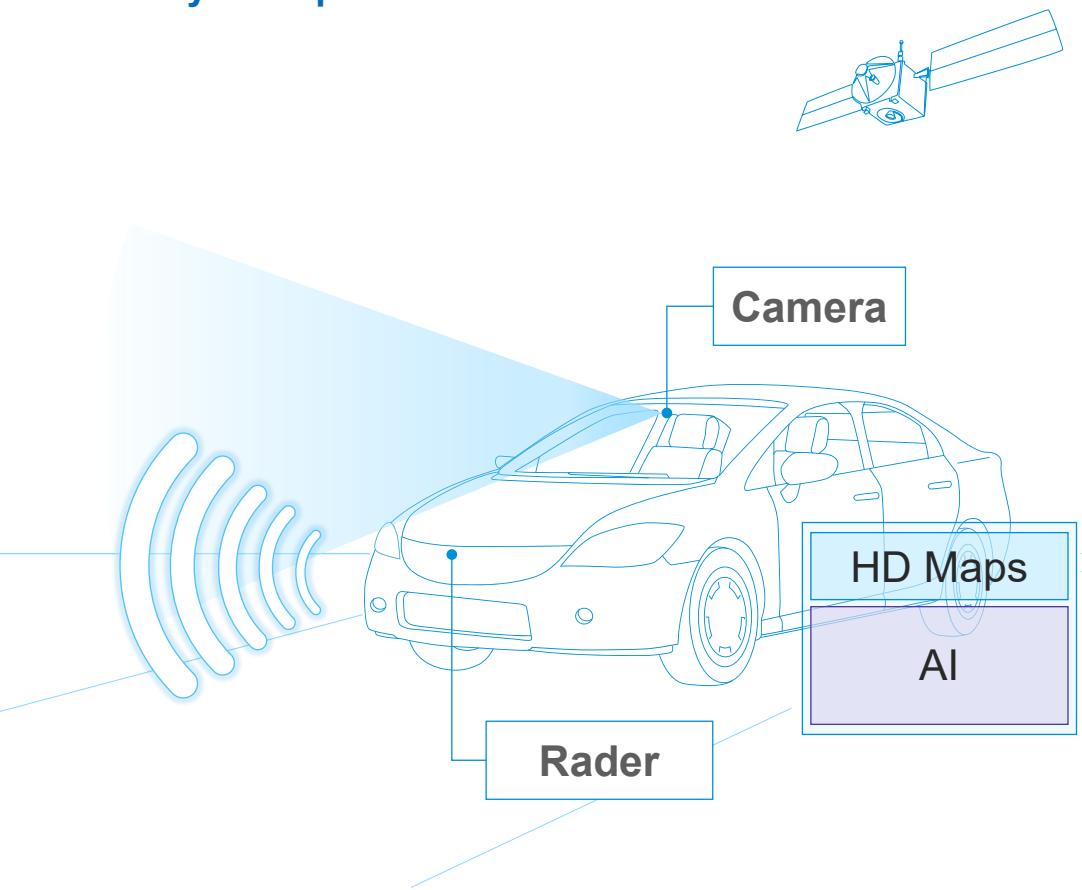
Net sales	2,248	2,451	+203
Domestic	376	647	+271
Overseas	1,871	1,804	(67)
Project	1,724	1,506	(218)
License	524	944	+420

Consolidated Balance Sheet / Cash Flow Statement

Consolidated Balance Sheet

	FYE3/2025 (As of March 31, 2025)	FYE3/2026 Q2 (As of Sep 30, 2025)	Change	(JPY mn)
Assets				
Total current assets	12,562	8,510	(4,052)	
Total property, plant and equipment	652	512	(139)	
Intangible assets	2,644	2,970	+ 326	
Investment and other assets	117	112	(4)	
Total non-current assets	3,413	3,595	+ 181	
Total assets	15,975	12,105	(3,870)	
Liabilities and net assets				
Total current liabilities	6,024	4,320	(1,704)	
Total non-current liabilities	991	301	(690)	
Total liabilities	7,016	4,621	(2,395)	
Share Capital	2,755	100	(2,655)	
Capital surplus	9,567	11,054	+ 1,486	
Retained earnings	(3,642)	(3,637)	+ 5	
Total shareholders' equity	8,680	7,516	(1,163)	
Foreign currency translation adjustment	253	(56)	(309)	
Total accumulated other comprehensive income	253	(56)	(309)	
Share acquisition rights	19	19	-	
Non-controlling interests	5	4	(1)	
Total net assets	8,958	7,483	(1,475)	
Total liabilities and net assets	15,975	12,105	(3,870)	

Consolidated Cash Flow Statement


	FYE3/2025 Q2 (cumulative)	FYE3/2026 Q2 (cumulative)	Increase/Decrease
Operating Activities	(724)	(592)	+132
Investing Activities	(1,699)	(882)	+ 882
Financing Activities	(954)	(1,942)	(988)

HD Maps for Automobiles - Role of HD maps for AD/ADAS

HD maps play a critical role in autonomous driving and advanced driver assistance systems (ADAS) that ensure a high level of safety. Recently, HD maps are more widely used with AI, including AI-based learning and inference.

What is HD Maps for Automobiles?

- ✓ Provide high-precision 3D data for automated driving and advanced driver assistance systems
- ✓ Play an important role in self-location estimation



The Role of HD Maps for Automobiles

DMP Service Site

Components of Autonomous Driving

Surrounding vehicle
recognition (all direction)

3D data Business - Viewer

By visualizing high-precision 3D data by Viewer, Business expansion is enabled in industries where digital transformation has yet to take place.

Example of Viewer App: 3Dmapspocket

- ✓ View accurate 3D data from with a web browser from anywhere
- ✓ Realize cm-class measurement and angle calculation without going to the site

Use Case and potential needs⁽¹⁾

1 Accident Investigation

Visualize and calculate data representing road conditions

2 Infrastructure Management

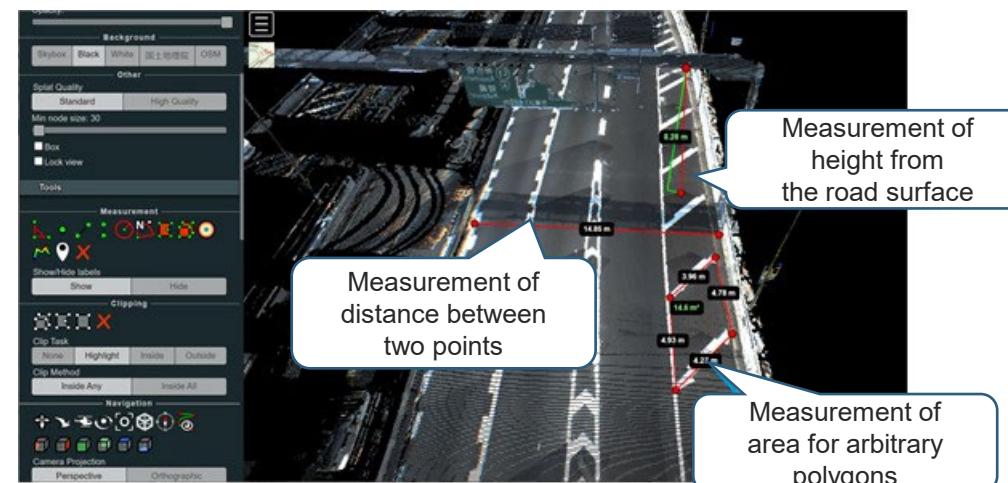
Enable accurate dimensional measurement including height and shape confirmation

3 Autonomous Mobility

Can contribute to the optimization of operational costs, such as route planning

4 MaaS Simulation

Enables time and cost optimization in building traffic simulations


Example of Viewer App: 3Dmapspocket

Challenges

- Difficulty in confirming accident scenes and ensuring the safety of investigation work

Implementation Effects

- Measurement and understanding of road structures and location information of accident scenes within a digital space, minimizing on-site work and reduce the number of on-site workers to two-thirds
- Implemented by major casualty insurance companies and accident investigation companies

Note:

(1)"Decarbonation" and "Entertainment" are in business development phase as of now

3D data Business - Guidance

We provide guidance functions by applying our technology for generating HD maps for AD/ADAS.

With this, we promote 3D data-based DX for industries lagging behind in digitization.

DMP Service Site

What is 3D data Business - Guidance?

- ✓ HD Maps + Tablet + Positioning Terminal
→High-precision Guidance

Use Case and potential needs⁽¹⁾

1 Snow Removal

3D visualization of snow-covered obstacles assists snow removal

2 Airports and Ports

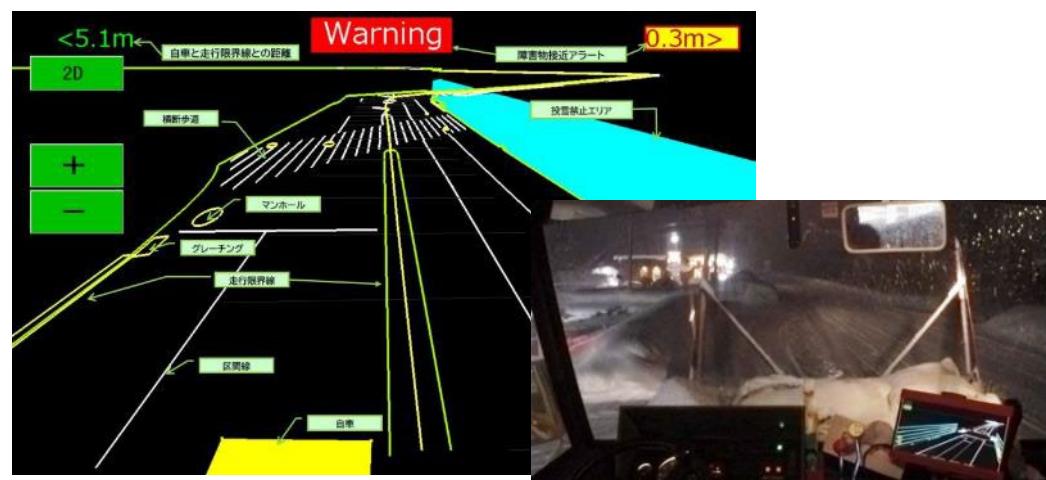
Guidance to transport vehicles according to aircraft takeoffs and landings

3 Decarbonation

Guidance for fuel-efficient driving for truck drivers by utilizing gradient information

4 Entertainment

High-precision MR with HD maps in mobility


Example of Guidance App: Snow Removal Support System

Challenges

- Labor shortage, Work safety

Implementation Effects

- Cost reduction through shorter work days
- Enhancing work safety through visualization of road structures
- Received orders from multiple local governments, primarily in the Hokkaido and Tohoku areas

Note:

(1)"Decarbonation" and "Entertainment" are in business development phase as of now

3D data Business - Government Projects

We have been entrusted with multiple government projects in the 3D data business, backed by a strong relationship with the Japanese government.

The projects serve as opportunities for contributing to solving social issues and for R&D and product development.

Significance of Participating in Government Projects

By providing DMP Group's high-precision 3D data, related technologies, and various expertise, we contribute to initiatives aimed at solving social issues. The projects also serve as opportunities for R&D and product development, enabling us to work on new license product development while curbing self-funded investments.

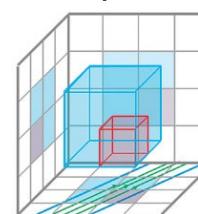
Examples of Government Project Contracts

Digital Lifeline: Development of Autonomous Driving Assistance Lanes

The project aims to develop a data coordination system for autonomous driving. Through implementation of dynamic maps, the project supports the autonomous driving bus operation and punctual operation of logistics trucks, thereby contributing to solving regional transportation crises and the "logistics 2024 problem."


DMP's role

Overall project coordination as the consortium representative, and development of data coordination systems (e.g. vehicle information coordination systems) as the platform for dynamic maps


Research and study on the construction of digital twins⁽¹⁾

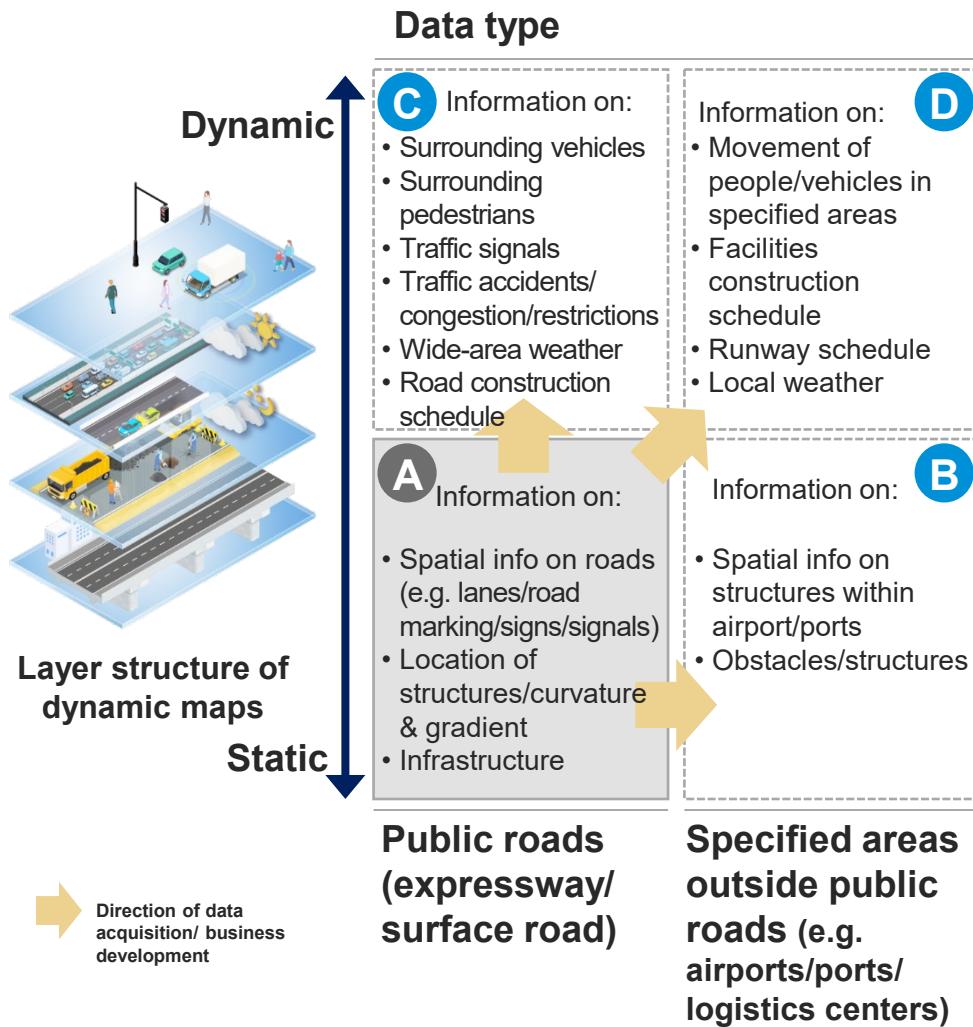
The project develops spatial ID, a standard that allows 3D space to be virtually segmented with multiple boxes to uniquely identify locations. By linking spatial ID with integrated information that was previously represented in a variety of forms, and converting it into a form that can be easily utilized by automated systems and robotics, this standard can be utilized as a digital twin platform.

Converting a real-world object into 3D data

Segmenting 3D data into box-shaped sections

DMP's role

Development related to 3D spatial information platform


Note: (1) Technology for digitally replicating a "twin" in the virtual space based on data collected in the real world and performing various simulations.

Diversification of data maintenance target areas due to business expansion

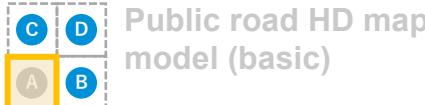
Since its establishment, our company has primarily maintained data for public roads. Recently, however, concrete initiatives to automate operations in public areas such as airports and ports, as well as in confined spaces like logistics centers, have advanced, resulting in a diversification of data maintenance target areas.

Achieving our mission, “Modeling the Earth,” requires data coverage across a wider range of areas. Surveying, which provides the technological foundation for this effort, is therefore a key domain for our company.

Data that makes up dynamic maps

Use cases that can be realized through acquisition/integration of various type of data

Category	Usage examples
Public road HD map model (basic)	<ul style="list-style-type: none"> Installation on mass-produced vehicles with AD/ADAS for public roads
Wide-area HD map model	<ul style="list-style-type: none"> Study on construction of digital twins Use of high-precision 3D data for accident investigation Sophistication of infrastructure management tools
Public road dynamic map model	<ul style="list-style-type: none"> Guidance for low-carbon operation of transport vehicles (eco-driving system) Guidance for snow removal on public roads
Specified area dynamic map model	<ul style="list-style-type: none"> Development of applications for autonomous mobility at airport/port facilities Introduction of vehicle management systems for logistics centers
All-domain scalable model	<ul style="list-style-type: none"> Design of Autonomous Driving Assistance Lanes aiming at establishment of digital lifeline Development of level 4 autonomous driving trucks for logistics automation Simulators for vehicle development, urban development, etc.


Dynamic map for a specified area

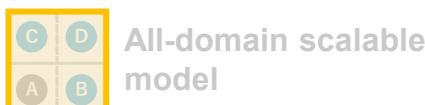
Promoting a proof-of-concept for providing dynamic maps in specified areas such as airports.

- Currently conducting a demonstration experiment on aircraft pushback guidance using SRSS (Snow Removal Support System) in collaboration with JAL Ground Service.
- Developing VIPS, a data linkage system that collects and distributes construction and sensor data, alongside HD maps for airports to support ground handling staff efficiency.

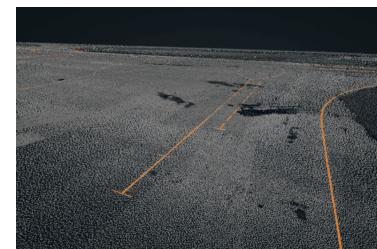
Supporting ground handling operations within airports using high-precision 3D data

Types of Data Utilization

Public road HD map model (basic)


Wide-area HD map model

Public road dynamic map model



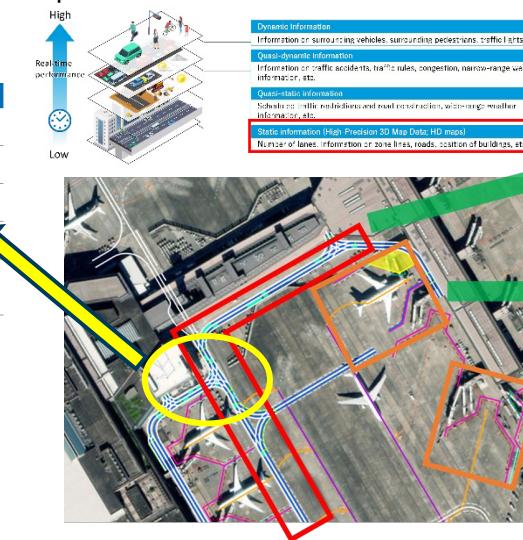
Specified area dynamic map model

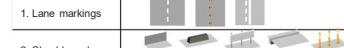
All-domain scalable model

Aircraft Pushback Guidance

High-precision 3D map data within an airport

SRSS usage during aircraft pushback


- “Pushback” refers to the process of moving an aircraft that is ready for departure from the gate to the taxiway.
- Supporting the driving operations of towing vehicle drivers when visibility is poor due to snowfall or rain, making it difficult to see the route the aircraft should follow.



Data Integration System (VIPS) for Supporting Ground Handling Operations

Enhancing public-road HD maps with airport-specific information. Supporting GSE route planning and vehicle control based on the positions of aircraft and other vehicles.

Dynamic map	
Building Name	Example of Geographic Feature
Construction Information	Detouring around the construction site becomes possible.
Emergency vehicle routes	An alert is triggered when approaching an emergency vehicle.
Parking availability	Check availability information for the destination.
Blind spot information	Provide a warning in areas where safety cannot be confirmed.
High-risk / accident-prone areas	Provide a warning before passing through accident-prone or potentially dangerous areas.

GSE : Bus, towing tractor

Public(Ordinary) road	
Name of objects	Examples of objects
1. Lane markings	
2. Shoulder edge	
3. Traffic signs	
4. Lane link	Lane centerline for each lane
5. Tunnel boundary line	
6. Intersection area	Polygon data representing intersection areas (virtual features)

Airport	
Name of objects	Examples of objects
1. Spot outline	
2. Spot area	
3. Spot lane marking	
4. Spot shoulder edge	
5. Spot lane link	
6. Spot TT waiting area	Terminal side and an aircraft side

Disclaimer

This document has been prepared by Dynamic Map Platform Co., Ltd. (the "Company") solely for informational purposes.

This document contains forward-looking statements, which are predictions about the future that reflect management's judgment based on currently available information. As such, these forward-looking statements are subject to various risks and uncertainties that could cause actual results to differ materially from those expressed in or suggested by the forward-looking statements. Therefore, you may not rely entirely on forward-looking statements. The Company does not assume any obligation to change or correct any forward-looking statements in light of new information, future events or other findings.

Information on companies other than the Company and information provided from third parties are based on public information or sources. The Company has not independently verified the accuracy and appropriateness of such data and indicators used herein, nor assume any responsibility for the accuracy and appropriateness of such data and indicators presented in this document.

This document is an English translation of the original Japanese language document and has been prepared solely for reference purposes. No warranties or assurances are given regarding the accuracy or completeness of this English translation. In the event of any discrepancy between this English translation and the original Japanese language document, the original Japanese language document shall prevail in all respects.